The Schur property for subgroup lattices of groups

被引:0
|
作者
Maria De Falco
Francesco de Giovanni
Carmela Musella
机构
[1] Università di Napoli Federico II,Dipartimento di Matematica e Applicazioni
[2] Complesso Universitario Monte S. Angelo,undefined
来源
Archiv der Mathematik | 2008年 / 91卷
关键词
20E15; 20F14; Modular lattice; Schur’s theorem; group covering;
D O I
暂无
中图分类号
学科分类号
摘要
A classical theorem of Schur states that if the centre of a group G has finite index, then the commutator subgroup G′ of G is finite. A lattice analogue of this result is proved in this paper: if a group G contains a modularly embedded subgroup of finite index, then there exists a finite normal subgroup N of G such that G/N has modular subgroup lattice. Here a subgroup M of a group G is said to be modularly embedded in G if the lattice \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{L}}(\langle x,M \rangle)$$\end{document} is modular for each element x of G. Some consequences of this theorem are also obtained; in particular, the behaviour of groups covered by finitely many subgroups with modular subgroup lattice is described.
引用
收藏
页码:97 / 105
页数:8
相关论文
共 50 条