Improved Flow-Induced Vibration Energy Harvester by Using Magnetic Force: An Experimental Study

被引:0
|
作者
Dongxing Cao
Xiangdong Ding
Xiangying Guo
Minghui Yao
机构
[1] Beijing University of Technology,College of Mechanical Engineering
[2] Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures,School of Artificial Intelligence
[3] Tianjin Polytechnic University,undefined
关键词
Vibration energy harvesting; Flow-induced vibration; Piezoelectric beam; Magnetic force enhancement;
D O I
暂无
中图分类号
学科分类号
摘要
Vibration energy harvesting has attracted considerable attention because of its application prospects for charging or powering micro-electro-mechanical system. Abundant hydrokinetic energy of water at low velocity is contained in the fluid environment, such as rivers and oceans, which are widely existing in nature. In this paper, a flow-induced piezoelectric vibration energy harvester (PVEH) with magnetic force enhancement, which is integrated by piezoelectric beam, circular cylinder bluff body and magnets, is proposed and experimental investigated. It could transfer the hydrokinetic energy, both the vortex-induced vibration and magnetic force excitation underwater, into electricity. First, the frequency sweep experiment of the piezoelectric cantilever beam is carried out to determine the resonance frequency where the effect of magnetic force on the vibration characteristic is obtained. Furthermore, the flow-induced vibration experiment platform is setup and the energy harvesting performance of the PVEH is investigated in detail. The effects of the magnet property, flow velocity and the magnetic poles distance on the vibration frequency and the acquisition voltage are demonstrated and discussed. The results show that it could improve the harvesting performance by introducing magnetic force. It has advantages in higher output voltage for the flow-induced PVEH, especially in low velocity water flow, when the flow velocity is 0.35 m/s, the PVEH under attractive magnetic force with magnetic distance of 20 mm scavenges the higher acquisition voltage of 5.2 V, which is increased by 225% than the PVEH with non-magnetic. The results can be applied to guide further fabrication process and optimized design of the proposed flow-induced PVEH underwater with low flow velocity.
引用
收藏
页码:879 / 887
页数:8
相关论文
共 50 条
  • [1] Improved Flow-Induced Vibration Energy Harvester by Using Magnetic Force: An Experimental Study
    Cao, Dongxing
    Ding, Xiangdong
    Guo, Xiangying
    Yao, Minghui
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2021, 8 (03) : 879 - 887
  • [2] SIMULATION AND EXPERIMENTAL INVESTIGATION OF AN ENERGY HARVESTER UTILIZING FLOW-INDUCED VIBRATION
    Abd El-Mageed, Mostafa G.
    Arafa, Mustafa
    Elaraby, Mohamed
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2014, VOL 8, 2014,
  • [3] Experimental study of the flow-induced vibration of a cut-corner prism energy harvester
    Wang, Weizhe
    Yao, Zhaohui
    PHYSICS OF FLUIDS, 2024, 36 (06)
  • [4] Study on different underwater energy harvester arrays based on flow-induced vibration
    Sui, Guangdong
    Shan, Xiaobiao
    Tian, Haigang
    Wang, Lele
    Xie, Tao
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 167
  • [5] Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration
    Shan, Xiaobiao
    Li, Hongliang
    Yang, Yuancai
    Feng, Ju
    Wang, Yicong
    Xie, Tao
    ENERGY, 2019, 172 : 134 - 140
  • [6] A piezoelectric energy harvester based on flow-induced flexural vibration of a circular cylinder
    Xie, Jiemin
    Yang, Jiashi
    Hu, Hongping
    Hu, Yuantai
    Chen, Xuedong
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2012, 23 (02) : 135 - 139
  • [7] Numerical Investigation of Flow-Induced Vibration of a Cantilever Beam for a Piezoelectric Energy Harvester
    Rasani, Mohammad Rasidi
    Tu, Jiyuan
    Mohamed, Nik Abdullah Nik
    AEROTECH IV: RECENT ADVANCES IN AEROSPACE TECHNOLOGIES, 2012, 225 : 97 - +
  • [8] Experimental study of wind energy harvesting from flow-induced vibration of prisms using magnetostrictive material
    Heragy, Mohamed
    Kiwata, Takahiro
    Hamano, Takahito
    Shima, Takuma
    Ueno, Toshiyuki
    Kono, Takaaki
    Ekmekci, Alis
    JOURNAL OF FLUIDS AND STRUCTURES, 2023, 119
  • [9] Development of the magnetic force-induced dual vibration energy harvester using a unimorph cantilever
    Umaba, M.
    Nakamachi, E.
    Morita, Y.
    MICRO+NANO MATERIALS, DEVICES, AND SYSTEMS, 2015, 9668
  • [10] Experimental study on flow-induced vibration of single rod in axial flow
    Wang, Ningyuan
    Ren, Quan-yao
    Chen, Deqi
    Liu, Haidong
    Liu, Hanzhou
    Bu, Shanshan
    ANNALS OF NUCLEAR ENERGY, 2024, 198