Strain-induced band gap engineering in layered TiS3

被引:0
|
作者
Robert Biele
Eduardo Flores
Jose Ramón Ares
Carlos Sanchez
Isabel J. Ferrer
Gabino Rubio-Bollinger
Andres Castellanos-Gomez
Roberto D’Agosta
机构
[1] Universidad del País Vasco,Nano
[2] Universidad Autónoma de Madrid,Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF)
[3] Instituto de Ciencia de Materiales “Nicolás Cabrera”,Materials of Interest in Renewable Energies Group (MIRE Group), Dpto. de Física de Materiales
[4] Campus de Cantoblanco,Dpto. de Física de la Materia Condensada, Condensed Matter Physics Center (IFIMAC)
[5] Universidad Autónoma de Madrid,IKERBASQUE
[6] Campus de Cantoblanco,undefined
[7] Instituto de Ciencia de los Materiales de Madrid (ICMM-CSIC),undefined
[8] Cantoblanco,undefined
[9] Basque Foundation for Science,undefined
来源
Nano Research | 2018年 / 11卷
关键词
band gap engineering; titanium trisulfide; 2-D materials; strain;
D O I
暂无
中图分类号
学科分类号
摘要
By combining ab initio calculations and experiments, we demonstrate how the band gap of the transition metal trichalcogenide TiS3 can be modified by inducing tensile or compressive strain. In addition, using our calculations, we predicted that the material would exhibit a transition from a direct to an indirect band gap upon application of a compressive strain in the direction of easy electrical transport. The ability to control the band gap and its nature could have a significant impact on the use of TiS3 for optical applications. We go on to verify our prediction via optical absorption experiments that demonstrate a band gap increase of up to 9% (from 0.99 to 1.08 eV) upon application of tensile stress along the easy transport direction.
引用
收藏
页码:225 / 232
页数:7
相关论文
共 50 条
  • [1] Strain-induced band gap engineering in layered TiS3
    Biele, Robert
    Flores, Eduardo
    Ramon Ares, Jose
    Sanchez, Carlos
    Ferrer, Isabel J.
    Rubio-Bollinger, Gabino
    Castellanos-Gomez, Andres
    D'Agosta, Roberto
    NANO RESEARCH, 2018, 11 (01) : 225 - 232
  • [2] Robust band gap of TiS3 nanofilms
    Kang, Jun
    Wang, Lin-Wang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (22) : 14805 - 14809
  • [3] Transport coefficients of layered TiS3
    Biele, Robert
    D'Agosta, Roberto
    PHYSICAL REVIEW MATERIALS, 2022, 6 (01):
  • [4] Directional dependence of band gap modulation via uniaxial strain in MoS2 and TiS3
    Armstrong, Alex
    Mckenna, Keith P.
    Wang, Yue
    NANOTECHNOLOGY, 2024, 35 (01)
  • [5] TiS3 nanoribbons: Width-independent band gap and strain-tunable electronic properties
    Kang, Jun
    Sahin, Hasan
    Ozaydin, H. Duygu
    Senger, R. Tugrul
    Peeters, Francois M.
    PHYSICAL REVIEW B, 2015, 92 (07)
  • [6] The band structure of the quasi-one-dimensional layered semiconductor TiS3(001)
    Yi, Hemian
    Komesu, Takashi
    Gilbert, Simeon
    Hao, Guanhua
    Yost, Andrew J.
    Lipatov, Alexey
    Sinitskii, Alexander
    Avila, Jose
    Chen, Chaoyu
    Asensio, Maria C.
    Dowben, P. A.
    APPLIED PHYSICS LETTERS, 2018, 112 (05)
  • [7] Strain-induced direct band gap LaAlO3 nanocrystals
    Yuan, C. L.
    Xu, B.
    Lei, W.
    MATERIALS LETTERS, 2012, 68 : 392 - 394
  • [8] Strain-induced band-gap engineering of graphene monoxide and its effect on graphene
    Pu, H. H.
    Rhim, S. H.
    Hirschmugl, C. J.
    Gajdardziska-Josifovska, M.
    Weinert, M.
    Chen, J. H.
    PHYSICAL REVIEW B, 2013, 87 (08)
  • [9] Strain engineering of quasi-1D layered TiS3 nanosheets toward giant anisotropic Raman and piezoresistance responses
    Qin, Jing-Kai
    Sun, Hai-Lin
    Su, Tong
    Zhao, Weiwei
    Zhen, Liang
    Chai, Yang
    Xu, Cheng-Yan
    APPLIED PHYSICS LETTERS, 2021, 119 (20)
  • [10] Strain Tuning of the Anisotropy in the Optoelectronic Properties of TiS3
    Silva-Guillen, J. A.
    Canadell, E.
    Guinea, F.
    Roldan, R.
    ACS PHOTONICS, 2018, 5 (08): : 3231 - 3237