Smearing of Observables and Spectral Measures on Quantum Structures

被引:0
|
作者
Anatolij Dvurečenskij
机构
[1] Slovak Academy of Sciences,Mathematical Institute
[2] Palacký Univer.,Depart. Algebra Geom.
来源
Foundations of Physics | 2013年 / 43卷
关键词
Effect algebra; Observable; Smearing of observables; Monotone ; -completeness; State; Loomis-Sikorski Theorem; Effect-tribe; Riesz decomposition property; Spectral measure;
D O I
暂无
中图分类号
学科分类号
摘要
An observable on a quantum structure is any σ-homomorphism of quantum structures from the Borel σ-algebra of the real line into the quantum structure which is in our case a monotone σ-complete effect algebra with the Riesz Decomposition Property. We show that every observable is a smearing of a sharp observable which takes values from a Boolean σ-subalgebra of the effect algebra, and we prove that for every element of the effect algebra there corresponds a spectral measure.
引用
收藏
页码:210 / 224
页数:14
相关论文
共 50 条