More on accreting black hole spacetime in equatorial plane

被引:0
|
作者
K. Salahshoor
K. Nozari
A. R. Khesali
机构
[1] University of Mazandaran,Department of Physics, Faculty of Basic Sciences
[2] Center for Excellence in Astronomy and Astrophysics (CEAAI-RIAAM),undefined
来源
关键词
Black holes; Accretion disks; Orbital motion; Radiation efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
Spacetime around an accreting black hole is an interesting issue to study. The metric of an isolated black hole (rotating or non-rotating) spacetime has been well-known for decades. Although metrics of some spacetimes containing accreting black holes are known in some situations, the issue has some faces that are not well-known yet and need further investigation. In this paper, we construct a new form of metric which the effect of accretion disk on black hole spacetime is taken into account in the equatorial plane. We study motion and trajectories of massive particles and also photons falling from infinity towards black hole in equatorial plane around the black hole. We use an exponential form for the density profile of the accretion disk in equatorial plane as ρ=ρ0e−αr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho =\rho_{0}e^{-\alpha r}$\end{document}. We show that with this density profile, the disk is radially stable if α≤3×10−3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \leq 3 \times 10^{-3}$\end{document} (in units of length inverse). In order to study some important quantities related to the accretion disks such as locations of marginally stable circular orbits (rms\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{ms}$\end{document} or rISCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{\mathit{ISCO}}$\end{document}), marginally bounded circular orbits (rmb)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(r_{mb})$\end{document}, and also photon orbits in equatorial plane, we use the effective potential approach. We show that in this spacetime metric the innermost stable circular orbit in equatorial plane is given by rISCO=4.03μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{\mathit{ISCO}}=4.03 \mu $\end{document} (where μ=MGc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu =\frac{MG}{c ^{2}}$\end{document}) which is different, but comparable, with the Schwarzschild spacetime result, rISCO(Sch)=6μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r^{(Sch)}_{\mathit{ISCO}}=6 \mu $\end{document}. We show that the maximum radiation efficiency of the accretion disk, η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\eta $\end{document}, in equatorial plane is 8.6 percent which is greater than the corresponding value for Schwarzschild spacetime. Finally, we show that in this setup photons can have stable circular orbits in equatorial plane unlike the Schwarzschild spacetime.
引用
收藏
相关论文
共 50 条
  • [1] More on accreting black hole spacetime in equatorial plane
    Salahshoor, K.
    Nozari, K.
    Khesali, A. R.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2017, 362 (02)
  • [2] Spacetime constraints on accreting black holes
    Garofalo, David
    [J]. PHYSICAL REVIEW D, 2009, 79 (12):
  • [3] Carter-Penrose diagrams for emergent spacetime in axisymmetrically accreting black hole systems
    Maity, Susovan
    Shaikh, Md Arif
    Tarafdar, Pratik
    Das, Tapas Kumar
    [J]. PHYSICAL REVIEW D, 2022, 106 (04)
  • [4] Phase space mixing in the equatorial plane of a Kerr black hole
    Rioseco, Paola
    Sarbach, Olivier
    [J]. PHYSICAL REVIEW D, 2018, 98 (12)
  • [5] Light's bending angle in the equatorial plane of a Kerr black hole
    Iyer, S. V.
    Hansen, E. C.
    [J]. PHYSICAL REVIEW D, 2009, 80 (12):
  • [6] Radiation in the black hole-plasma system: Propagation in equatorial plane
    Balek, Vladimir
    Bezdekova, Barbora
    Bicak, Jiri
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (08)
  • [7] Deflection of light in equatorial plane of Kerr-Sen black hole
    Uniyal, Rashmi
    Nandan, Hemwati
    Jetzer, Philippe
    [J]. 15TH MARCEL GROSSMANN MEETING, PT A, 2022, : 1870 - 1875
  • [8] Accretion of the relativistic Vlasov gas in the equatorial plane of the Kerr black hole
    Cieslik, Adam
    Mach, Patryk
    Odrzywolek, Andrzej
    [J]. PHYSICAL REVIEW D, 2022, 106 (10)
  • [9] Accreting plasmas in black hole magnetospheres
    Takahashi, M
    [J]. HIGHLY ENERGETIC PHYSICAL PROCESSES AND MECHANISMS FOR EMISSION FROM ASTROPHYSICAL PLASMAS, 2000, (195): : 233 - 240
  • [10] The Shadow of a Spherically Accreting Black Hole
    Narayan, Ramesh
    Johnson, Michael D.
    Gammie, Charles F.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2019, 885 (02)