On the Stanley depth of squarefree Veronese ideals

被引:0
|
作者
Mitchel T. Keller
Yi-Huang Shen
Noah Streib
Stephen J. Young
机构
[1] Georgia Institute of Technology,School of Mathematics
[2] University of Science and Technology of China,Department of Mathematics
[3] University of California,Department of Mathematics
[4] San Diego,undefined
来源
关键词
Stanley depth; Squarefree monomial ideal; Interval partition; Squarefree Veronese ideal;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be a field and S=K[x1,…,xn]. In 1982, Stanley defined what is now called the Stanley depth of an S-module M, denoted sdepth (M), and conjectured that depth (M)≤sdepth (M) for all finitely generated S-modules M. This conjecture remains open for most cases. However, Herzog, Vladoiu and Zheng recently proposed a method of attack in the case when M=I/J with J⊂I being monomial S-ideals. Specifically, their method associates M with a partially ordered set. In this paper we take advantage of this association by using combinatorial tools to analyze squarefree Veronese ideals in S. In particular, if In,d is the squarefree Veronese ideal generated by all squarefree monomials of degree d, we show that if 1≤d≤n<5d+4, then sdepth (In,d)=⌊(n−d)/(d+1)⌋+d, and if d≥1 and n≥5d+4, then d+3≤sdepth (In,d)≤⌊(n−d)/(d+1)⌋+d.
引用
下载
收藏
页码:313 / 324
页数:11
相关论文
共 50 条
  • [1] Stanley depth of squarefree Veronese ideals
    Cimpoeas, Mircea
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2013, 21 (03): : 67 - 71
  • [2] On the Stanley depth of squarefree Veronese ideals
    Keller, Mitchel T.
    Shen, Yi-Huang
    Streib, Noah
    Young, Stephen J.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2011, 33 (02) : 313 - 324
  • [3] ON A CONJECTURE OF STANLEY DEPTH OF SQUAREFREE VERONESE IDEALS
    Ge, Maorong
    Lin, Jiayuan
    Shen, Yi-Huang
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (08) : 2720 - 2731
  • [4] Stanley depth of squarefree monomial ideals
    Keller, Mitchel T.
    Young, Stephen J.
    JOURNAL OF ALGEBRA, 2009, 322 (10) : 3789 - 3792
  • [5] Hilbert series and Hilbert depth of squarefree Veronese ideals
    Ge, Maorong
    Lin, Jiayuan
    Wang, Yulan
    JOURNAL OF ALGEBRA, 2011, 344 (01) : 260 - 267
  • [6] STANLEY DEPTH OF WEAKLY POLYMATROIDAL IDEALS AND SQUAREFREE MONOMIAL IDEALS
    Fakhari, S. A. Seyed
    ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (03) : 871 - 881
  • [7] Stanley depth on five generated, squarefree, monomial ideals
    Popescu, Dorin
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (01): : 75 - 99
  • [8] A lower bound for Stanley depth of squarefree monomial ideals
    Zhu, Guangjun
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (04) : 816 - 823
  • [9] STABILITY OF DEPTH AND STANLEY DEPTH OF SYMBOLIC POWERS OF SQUAREFREE MONOMIAL IDEALS
    Fakhari, S. A. Seyed
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) : 1849 - 1862
  • [10] On the Stanley Depth and the Schmitt-Vogel Number of Squarefree Monomial Ideals
    Fakhari, S. A. Seyed
    MULTIGRADED ALGEBRA AND APPLICATIONS, 2018, 238 : 77 - 82