New General Solution to a Quasilinear Fredholm Integro-Differential Equation and Its Application

被引:1
|
作者
Assanova, A. T. [1 ]
Mynbayeva, S. T. [1 ,2 ]
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[2] Zhubanov Aktobe Reg Univ, Aktobe, Kazakhstan
关键词
quasilinear Fredholm integro-differential equation; new general solution; two-point boundary value problem; parametrization method; solvability conditions; BOUNDARY-VALUE-PROBLEMS; NUMERICAL-SOLUTION; SOLVABILITY; ALGORITHM; SOLVE;
D O I
10.1134/S1995080223100062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A quasilinear Fredholm integro-differential equation is considered on a finite interval. By using Dzhumabaev parametrization method the integro-differential equation is reduced to a special Cauchy problem. The sufficient conditions of the existence of a unique solution to the special Cauchy problem are established, and a new general solution to the integro-differential equation is constructed using this solution. The new general solution is used to solve a boundary value problem, the conditions for the existence of a unique solution to the boundary value problem are obtained.
引用
收藏
页码:4231 / 4239
页数:9
相关论文
共 50 条
  • [1] NEW GENERAL SOLUTION TO A NONLINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATION
    Dzhumabaev, D. S.
    Mynbayeva, S. T.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2019, 10 (04): : 24 - 33
  • [2] A SOLUTION TO A NONLINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATION
    Assanova, Anar T.
    Karakenova, Sayakhat G.
    Mynbayeva, Sandugash T.
    Uteshova, Rosa E.
    [J]. QUAESTIONES MATHEMATICAE, 2024, 47 (01) : 61 - 73
  • [3] On a New Nonlinear Integro-Differential Fredholm-Chandrasekhar Equation
    Khellaf, Ammar
    Benssaad, Meryem
    Lemita, Samir
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [4] Numerical solution of a Fredholm integro-differential equation modelling neural networks
    Jackiewicz, Z
    Rahman, A
    Welfert, BD
    [J]. APPLIED NUMERICAL MATHEMATICS, 2006, 56 (3-4) : 423 - 432
  • [5] Numerical solution of a Fredholm integro-differential equation modelling θ-neural networks
    Jackiewicz, Z.
    Rahman, M.
    Welfert, B. D.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (02) : 523 - 536
  • [6] Exponential spline method for approximation solution of Fredholm integro-differential equation
    Jalilian, R.
    Tahernezhad, T.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (04) : 791 - 801
  • [7] On a nonlinear integro-differential equation of Fredholm type
    Bounaya, Mohammed Charif
    Lemita, Samir
    Ghiat, Mourad
    Aissaoui, Mohamed Zine
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2021, 13 (02) : 194 - 205
  • [8] The inverse problem for a quasilinear integro-differential equation
    Denisov, AM
    [J]. DIFFERENTIAL EQUATIONS, 2001, 37 (10) : 1420 - 1426
  • [9] The Inverse Problem for a Quasilinear Integro-Differential Equation
    A. M. Denisov
    [J]. Differential Equations, 2001, 37 : 1420 - 1426
  • [10] A Procedure for Constructing the Solution of a Nonlinear Fredholm Integro-Differential Equation of Second Order
    da Gama, Rogerio Martins Saldanha
    da Gama, Rogerio Pazetto Saldanha
    [J]. AXIOMS, 2022, 11 (12)