Blind source separation for the analysis sparse model

被引:1
|
作者
Shuang Ma
Hongjuan Zhang
Zhuoyun Miao
机构
[1] Shanghai University,Department of Mathematics
来源
关键词
Analysis sparse model; Analysis dictionary learning; Blind source separation;
D O I
暂无
中图分类号
学科分类号
摘要
Sparsity of the signal has been shown to be very useful for blind source separation (BSS) problem which aims at recovering unknown sources from their mixtures. In this paper, we propose a novel algorithm based on the analysis sparse constraint of the source over an adaptive analysis dictionary to address BSS problem. This method has an alternating scheme by keeping all but one unknown fixed at a time so that the dictionary, the source, and the mixing matrix are estimated alternatively. In order to make better use of the sparsity constrain, l0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{0}$$\end{document}-norm is utilized directly for a more exact solution instead of its other relaxation, such as lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\mathrm{p}}$$\end{document}-norm (0<p≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p\le 1$$\end{document}). Numerical experiments show that the proposed method indeed improves the separation performance.
引用
收藏
页码:8543 / 8553
页数:10
相关论文
共 50 条
  • [1] Blind source separation for the analysis sparse model
    Ma, Shuang
    Zhang, Hongjuan
    Miao, Zhuoyun
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (14): : 8543 - 8553
  • [2] Analysis of sparse representation and blind source separation
    Li, YQ
    Cichocki, A
    Amari, S
    NEURAL COMPUTATION, 2004, 16 (06) : 1193 - 1234
  • [3] On a sparse component analysis approach to blind source separation
    Chang, CQ
    Fung, PCW
    Hung, YS
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 765 - 772
  • [4] Blind source separation using analysis sparse constraint
    Fang, Wanting
    Wang, Haolong
    Xu, Biao
    Zhang, Ye
    ELECTRONICS LETTERS, 2016, 52 (13) : 1112 - 1113
  • [5] Robust Sparse Blind Source Separation
    Chenot, Cecile
    Bobin, Jerome
    Rapin, Jeremy
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (11) : 2172 - 2176
  • [6] Blind source separation by sparse decomposition
    Zibulevsky, M
    Pearlmutter, BA
    WAVELET APPLICATIONS VII, 2000, 4056 : 165 - 174
  • [7] A SPARSE COMPONENT MODEL OF SOURCE SIGNALS AND ITS APPLICATION TO BLIND SOURCE SEPARATION
    Kitano, Yu
    Kameoka, Hirokazu
    Izumi, Yosuke
    Ono, Nobutaka
    Sagayama, Shigeki
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 4122 - 4125
  • [8] Sparse Kernel Independent Component Analysis for Blind Source Separation
    Khan, Asif
    Kim, Intaek
    JOURNAL OF THE OPTICAL SOCIETY OF KOREA, 2008, 12 (03) : 121 - 125
  • [9] Sparse component analysis and blind source separation of underdetermined mixtures
    Georgiev, P
    Theis, F
    Cichocki, A
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (04): : 992 - 996
  • [10] Sparse Independent Component Analysis with Interpolation for Blind Source Separation
    Khan, Asif
    Kim, Intaek
    2009 2ND INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND COMMUNICATION, 2009, : 29 - 34