Quasi-Monte Carlo methods for linear two-stage stochastic programming problems

被引:0
|
作者
H. Leövey
W. Römisch
机构
[1] Humboldt-University Berlin,Institute of Mathematics
来源
Mathematical Programming | 2015年 / 151卷
关键词
90C15; 65D30; 11K16; 11K45;
D O I
暂无
中图分类号
学科分类号
摘要
Quasi-Monte Carlo (QMC) algorithms are studied for generating scenarios to solve two-stage linear stochastic programming problems. Their integrands are piecewise linear-quadratic, but do not belong to the function spaces considered for QMC error analysis. We show that under some weak geometric condition on the two-stage model all terms of their ANOVA decomposition, except the one of highest order, are continuously differentiable and second order mixed derivatives exist almost everywhere and belong to L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{2}$$\end{document}. This implies that randomly shifted lattice rules may achieve the optimal rate of convergence O(n-1+δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{-1+\delta })$$\end{document} with δ∈(0,12]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \in (0,\frac{1}{2}]$$\end{document} and a constant not depending on the dimension if the effective superposition dimension is less than or equal to two. The geometric condition is shown to be satisfied for almost all covariance matrices if the underlying probability distribution is normal. We discuss effective dimensions and techniques for dimension reduction. Numerical experiments for a production planning model with normal inputs show that indeed convergence rates close to the optimal rate are achieved when using randomly shifted lattice rules or scrambled Sobol’ point sets accompanied with principal component analysis for dimension reduction.
引用
收藏
页码:315 / 345
页数:30
相关论文
共 50 条
  • [1] Quasi-Monte Carlo methods for linear two-stage stochastic programming problems
    Leovey, H.
    Roemisch, W.
    [J]. MATHEMATICAL PROGRAMMING, 2015, 151 (01) : 315 - 345
  • [2] Quasi-Monte Carlo methods for two-stage stochastic mixed-integer programs
    H. Leövey
    W. Römisch
    [J]. Mathematical Programming, 2021, 190 : 361 - 392
  • [3] Quasi-Monte Carlo methods for two-stage stochastic mixed-integer programs
    Leovey, H.
    Roemisch, W.
    [J]. MATHEMATICAL PROGRAMMING, 2021, 190 (1-2) : 361 - 392
  • [4] Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs?
    Heitsch, H.
    Leoevey, H.
    Roemisch, W.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (03) : 567 - 603
  • [5] Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs?
    H. Heitsch
    H. Leövey
    W. Römisch
    [J]. Computational Optimization and Applications, 2016, 65 : 567 - 603
  • [6] Quasi-Monte Carlo methods for some linear algebra problems
    Karaivanova, A
    Mascagni, M
    [J]. PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2003, : 1754 - 1757
  • [7] Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
    A. D. Gilbert
    I. G. Graham
    F. Y. Kuo
    R. Scheichl
    I. H. Sloan
    [J]. Numerische Mathematik, 2019, 142 : 863 - 915
  • [8] Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
    Gilbert, A. D.
    Graham, I. G.
    Kuo, F. Y.
    Scheichl, R.
    Sloan, I. H.
    [J]. NUMERISCHE MATHEMATIK, 2019, 142 (04) : 863 - 915
  • [9] Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo
    Owen, AB
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 86 - 97
  • [10] Monte Carlo and quasi-Monte Carlo methods - Preface
    Spanier, J
    Pengilly, JH
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (8-9) : R11 - R13