Maximum coverage problem with group budget constraints

被引:0
|
作者
Boaz Farbstein
Asaf Levin
机构
[1] The Technion,Faculty of Industrial Engineering and Management
来源
关键词
Maximum coverage; Greedy algorithm; Approximation algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
We study the maximum coverage problem with group budget constraints (MCG). The input consists of a ground set X, a collection ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} of subsets of X each of which is associated with a combinatorial structure such that for every set Sj∈ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_j\in \psi $$\end{document}, a cost c(Sj)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(S_j)$$\end{document} can be calculated based on the combinatorial structure associated with Sj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_j$$\end{document}, a partition G1,G2,…,Gl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1,G_2,\ldots ,G_l$$\end{document} of ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}, and budgets B1,B2,…,Bl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1,B_2,\ldots ,B_l$$\end{document}, and B. A solution to the problem consists of a subset H of ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} such that ∑Sj∈Hc(Sj)≤B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{S_j\in H} c(S_j) \le B$$\end{document} and for each i∈1,2,…,l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \in {1,2,\ldots ,l}$$\end{document}, ∑Sj∈H∩Gic(Sj)≤Bi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{S_j \in H\cap G_i}c(S_j)\le B_i$$\end{document}. The objective is to maximize |⋃Sj∈HSj|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\bigcup _{S_j\in H}S_j|$$\end{document}. In our work we use a new and improved analysis of the greedy algorithm to prove that it is a (α3+2α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\frac{\alpha }{3+2\alpha })$$\end{document}-approximation algorithm, where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is the approximation ratio of a given oracle which takes as an input a subset Xnew⊆X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^{new}\subseteq X$$\end{document} and a group Gi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_i$$\end{document} and returns a set Sj∈Gi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_j\in G_i$$\end{document} which approximates the optimal solution for maxD∈Gi|D∩Xnew|c(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max _{D\in G_i}\frac{|D\cap X^{new}|}{c(D)}$$\end{document}. This analysis that is shown here to be tight for the greedy algorithm, improves by a factor larger than 2 the analysis of the best known approximation algorithm for MCG.
引用
收藏
页码:725 / 735
页数:10
相关论文
共 50 条
  • [1] Maximum coverage problem with group budget constraints
    Farbstein, Boaz
    Levin, Asaf
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (03) : 725 - 735
  • [2] Maximum coverage problem with group budget constraints and applications
    Chekuri, C
    Kumar, A
    [J]. APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, PROCEEDINGS, 2004, 3122 : 72 - 83
  • [3] Approximation Algorithms for Maximum Coverage with Group Budget Constraints
    Guo, Longkun
    Li, Min
    Xu, Dachuan
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2017, PT II, 2017, 10628 : 362 - 376
  • [4] Efficient approximation algorithms for maximum coverage with group budget constraints
    Guo, Longkun
    Li, Min
    Xu, Dachuan
    [J]. THEORETICAL COMPUTER SCIENCE, 2019, 788 : 53 - 65
  • [5] Maximum Network Lifetime Problem with Time Slots and coverage constraints: heuristic approaches
    Cerulli, Raffaele
    D'Ambrosio, Ciriaco
    Iossa, Antonio
    Palmieri, Francesco
    [J]. JOURNAL OF SUPERCOMPUTING, 2022, 78 (01): : 1330 - 1355
  • [6] Maximum Network Lifetime Problem with Time Slots and coverage constraints: heuristic approaches
    Raffaele Cerulli
    Ciriaco D’Ambrosio
    Antonio Iossa
    Francesco Palmieri
    [J]. The Journal of Supercomputing, 2022, 78 : 1330 - 1355
  • [7] THE MAXIMUM COVERAGE LOCATION PROBLEM
    MEGIDDO, N
    ZEMEL, E
    HAKIMI, SL
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1983, 4 (02): : 253 - 261
  • [8] The budgeted maximum coverage problem
    Khuller, S
    Moss, A
    Naor, JS
    [J]. INFORMATION PROCESSING LETTERS, 1999, 70 (01) : 39 - 45
  • [9] The Generalized Maximum Coverage Problem
    Cohen, Reuven
    Katzir, Liran
    [J]. INFORMATION PROCESSING LETTERS, 2008, 108 (01) : 15 - 22
  • [10] A multi-neighborhood tabu search for solving multi-budget maximum coverage problem
    Liu, Yawen
    Pan, Dazhi
    [J]. APPLIED SOFT COMPUTING, 2024, 153