Einstein metrics and complex singularities

被引:0
|
作者
David M.J. Calderbank
Michael A. Singer
机构
[1] University of Edinburgh,School of Mathematics
来源
Inventiones mathematicae | 2004年 / 156卷
关键词
Partial Differential Equation; Scalar Curvature; Real Variable; Betti Number; Isometry Group;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the construction of special metrics on non-compact 4-manifolds which arise as resolutions of complex orbifold singularities. Our study is close in spirit to the construction of the hyperkähler gravitational instantons, but we focus on a different class of singularities. We show that any resolution X of an isolated cyclic quotient singularity admits a complete scalar-flat Kähler metric (which is hyperkähler if and only if KX is trivial), and that if KX is strictly nef, then X also admits a complete (non-Kähler) self-dual Einstein metric of negative scalar curvature. In particular, complete self-dual Einstein metrics are constructed on simply-connected non-compact 4-manifolds with arbitrary second Betti number.
引用
收藏
页码:405 / 443
页数:38
相关论文
共 50 条
  • [1] Einstein metrics and complex singularities
    Calderbank, DMJ
    Singer, MA
    INVENTIONES MATHEMATICAE, 2004, 156 (02) : 405 - 443
  • [2] Toric Sasaki–Einstein metrics with conical singularities
    Martin de Borbon
    Eveline Legendre
    Selecta Mathematica, 2022, 28
  • [3] Kahler-Einstein metrics with edge singularities
    Jeffres, Thalia
    Mazzeo, Rafe
    Rubinstein, Yanir A.
    ANNALS OF MATHEMATICS, 2016, 183 (01) : 95 - 176
  • [4] Einstein metrics on complex surfaces
    Lebrun, C
    GEOMETRY AND PHYSICS, 1997, 184 : 167 - 176
  • [5] KAHLER-EINSTEIN METRICS WITH CONE SINGULARITIES ON KLT PAIRS
    Guenancia, Henri
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (05)
  • [6] Kahler-Einstein metrics with prescribed singularities on Fano manifolds
    Trusiani, Antonio
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (793): : 1 - 57
  • [7] EINSTEIN-METRICS AND COMPLEX STRUCTURES
    KOISO, N
    INVENTIONES MATHEMATICAE, 1983, 73 (01) : 71 - 106
  • [8] LCK metrics on complex spaces with quotient singularities
    Ionita, George-Ionut
    Preda, Ovidiu
    MANUSCRIPTA MATHEMATICA, 2020, 162 (3-4) : 483 - 491
  • [9] LCK metrics on complex spaces with quotient singularities
    George-Ionuţ Ioniţă
    Ovidiu Preda
    manuscripta mathematica, 2020, 162 : 483 - 491
  • [10] KAHLER-EINSTEIN METRICS ON FANO MANIFOLDS. I: APPROXIMATION OF METRICS WITH CONE SINGULARITIES
    Chen, Xiuxiong
    Donaldson, Simon
    Sun, Song
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 28 (01) : 183 - 197