k-Inflation in noncommutative space–time

被引:0
|
作者
Chao-Jun Feng
Xin-Zhou Li
Dao-Jun Liu
机构
[1] Shanghai Normal University,Shanghai United Center for Astrophysics (SUCA)
来源
关键词
Cosmic Microwave Background; Wilkinson Microwave Anisotropy Probe; Scalar Perturbation; Inflation Model; Noncommutative Space;
D O I
暂无
中图分类号
学科分类号
摘要
The power spectra of the scalar and tensor perturbations in the noncommutative k-inflation model are calculated in this paper. In this model, all the modes created when the stringy space–time uncertainty relation is satisfied, and they are generated inside the sound/Hubble horizon during inflation for the scalar/tensor perturbations. It turns out that a linear term describing the noncommutative space–time effect contributes to the power spectra of the scalar and tensor perturbations. Confronting the general noncommutative k-inflation model with latest results from Planck and BICEP2, and taking cS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_\mathrm{S}$$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} as free parameters, we find that it is well consistent with observations. However, for the two specific models, i.e. the tachyon and DBI inflation models, it is found that the DBI model is not favored, while the tachyon model lies inside the 1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\sigma $$\end{document} contour, when the e-folding number is assumed to be around 50∼60\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$50\sim 60$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] k-Inflation in noncommutative space-time
    Feng, Chao-Jun
    Li, Xin-Zhou
    Liu, Dao-Jun
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (02): : 1 - 8
  • [2] k-Inflation
    Armendáriz-Picón, C
    Damour, T
    Mukhanov, V
    [J]. PHYSICS LETTERS B, 1999, 458 (2-3) : 209 - 218
  • [3] Perturbations in k-inflation
    Garriga, J
    Mukhanov, VF
    [J]. PHYSICS LETTERS B, 1999, 458 (2-3) : 219 - 225
  • [4] Consistency of warm k-inflation
    Peng, Zhi-Peng
    Yu, Jia-Ning
    Zhu, Jian-Yang
    Zhang, Xiao-Min
    [J]. PHYSICAL REVIEW D, 2016, 94 (10)
  • [5] WMAP constraints on k-inflation
    Devi, N. Chandrachani
    Nautiyal, Akhilesh
    Sen, Anjan A.
    [J]. PHYSICAL REVIEW D, 2011, 84 (10)
  • [6] k-Inflation -: a kind of introduction
    Armendáriz-Picón, C
    [J]. BASICS AND HIGHLIGHTS IN FUNDAMENTAL PHYSICS, 2001, 37 : 547 - 556
  • [7] Reheating constraints on k-inflation
    Pareek, Pooja
    Nautiyal, Akhilesh
    [J]. PHYSICAL REVIEW D, 2021, 104 (08)
  • [8] Self-reproduction in k-inflation
    Helmer, Ferdinand
    Winitzki, Sergei
    [J]. PHYSICAL REVIEW D, 2006, 74 (06):
  • [9] Generalized space-time noncommutative inflation
    Xue, Wei
    Chen, Bin
    Wang, Yi
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2007, (09):
  • [10] Observational constraints on assisted k-inflation
    Ohashi, Junko
    Tsujikawa, Shinji
    [J]. PHYSICAL REVIEW D, 2011, 83 (10)