Coloring Graphs Without Bichromatic Cycles or Paths

被引:0
|
作者
Jianfeng Hou
Hongguo Zhu
机构
[1] Fuzhou University,Center for Discrete Mathematics
关键词
Coloring; Acyclic; -free; Entropy compression; 05C10; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Let k≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 4$$\end{document} be an integer, and let G be a graph with maximum degree Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}. In 1991, Alon, McDiarmid and Reed proved that G has a proper coloring using O(Δ(k-1)/(k-2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\Delta ^{(k-1)/(k-2)})$$\end{document} colors such that G does not have bichromatic paths with k vertices. In this paper, we improve this result by showing G has a proper coloring using (1+⌈k/2⌉1/(k-3))Δ(k-1)/(k-2)+Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\lceil k/2\rceil ^{1/(k-3)})\Delta ^{(k-1)/(k-2)}+\Delta +1$$\end{document} colors such that G does not have bichromatic paths with k vertices. We remark that there exists a graph G with maximum degree Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} such that for any proper coloring of G using Ω(Δ(k-1)/(k-2)(logΔ)1/(k-2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\frac{\Delta ^{(k-1)/(k-2)}}{(\log \Delta )^{1/(k-2)}})$$\end{document} colors, there is always a bichromatic path with k vertices. Using the similar method, we also show that G has a proper coloring using O(Δ4/3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\Delta ^{4/3})$$\end{document} colors such that G contains neither bichromatic cycles nor bichromatic paths with order 5.
引用
收藏
页码:1905 / 1917
页数:12
相关论文
共 50 条
  • [1] Coloring Graphs Without Bichromatic Cycles or Paths
    Hou, Jianfeng
    Zhu, Hongguo
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) : 1905 - 1917
  • [2] Complexity of Coloring Graphs without Paths and Cycles
    Hell, Pavol
    Huang, Shenwei
    [J]. LATIN 2014: THEORETICAL INFORMATICS, 2014, 8392 : 538 - 549
  • [3] Complexity of coloring graphs without paths and cycles
    Hell, Pavol
    Huang, Shenwei
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 216 : 211 - 232
  • [4] Coloring graphs without short cycles and long induced paths
    Golovach, Petr A.
    Paulusma, Daniel
    Song, Jian
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 167 : 107 - 120
  • [5] Acyclic coloring of graphs without bichromatic long path
    Jianfeng Hou
    Shufei Wu
    [J]. Frontiers of Mathematics in China, 2015, 10 : 1343 - 1354
  • [6] Acyclic coloring of graphs without bichromatic long path
    Hou, Jianfeng
    Wu, Shufei
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (06) : 1343 - 1354
  • [7] Approximately Coloring Graphs Without Long Induced Paths
    Maria Chudnovsky
    Oliver Schaudt
    Sophie Spirkl
    Maya Stein
    Mingxian Zhong
    [J]. Algorithmica, 2019, 81 : 3186 - 3199
  • [8] Approximately Coloring Graphs Without Long Induced Paths
    Chudnovsky, Maria
    Schaudt, Oliver
    Spirkl, Sophie
    Stein, Maya
    Zhong, Mingxian
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2017), 2017, 10520 : 193 - 205
  • [9] Approximately Coloring Graphs Without Long Induced Paths
    Chudnovsky, Maria
    Schaudt, Oliver
    Spirkl, Sophie
    Stein, Maya
    Zhong, Mingxian
    [J]. ALGORITHMICA, 2019, 81 (08) : 3186 - 3199
  • [10] Total coloring of planar graphs without short cycles
    Hua Cai
    Jianliang Wu
    Lin Sun
    [J]. Journal of Combinatorial Optimization, 2016, 31 : 1650 - 1664