On Polynomial Time Methods for Exact Low-Rank Tensor Completion

被引:0
|
作者
Dong Xia
Ming Yuan
机构
[1] Hong Kong University of Science and Technology,Department of Statistics
[2] Columbia University,undefined
关键词
Concentration inequality; Matrix completion; Nonconvex optimization; Polynomial time complexity; Tensor completion; Tensor rank; U-statistics; Primary 90C25; Secondary 90C59; 15A52;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the sample size requirement for exact recovery of a high-order tensor of low rank from a subset of its entries. We show that a gradient descent algorithm with initial value obtained from a spectral method can, in particular, reconstruct a d×d×d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d\times d\times d}$$\end{document} tensor of multilinear ranks (r, r, r) with high probability from as few as O(r7/2d3/2log7/2d+r7dlog6d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(r^{7/2}d^{3/2}\log ^{7/2}d+r^7d\log ^6d)$$\end{document} entries. In the case when the ranks r=O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=O(1)$$\end{document}, our sample size requirement matches those for nuclear norm minimization (Yuan and Zhang in Found Comput Math 1031–1068, 2016), or alternating least squares assuming orthogonal decomposability (Jain and Oh in Advances in Neural Information Processing Systems, pp 1431–1439, 2014). Unlike these earlier approaches, however, our method is efficient to compute, is easy to implement, and does not impose extra structures on the tensor. Numerical results are presented to further demonstrate the merits of the proposed approach.
引用
收藏
页码:1265 / 1313
页数:48
相关论文
共 50 条
  • [1] On Polynomial Time Methods for Exact Low-Rank Tensor Completion
    Xia, Dong
    Yuan, Ming
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2019, 19 (06) : 1265 - 1313
  • [2] Robust Low-Rank and Sparse Tensor Decomposition for Low-Rank Tensor Completion
    Shi, Yuqing
    Du, Shiqiang
    Wang, Weilan
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 7138 - 7143
  • [3] Tensor Factorization for Low-Rank Tensor Completion
    Zhou, Pan
    Lu, Canyi
    Lin, Zhouchen
    Zhang, Chao
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1152 - 1163
  • [4] Low-Rank Tensor Completion by Approximating the Tensor Average Rank
    Wang, Zhanliang
    Dong, Junyu
    Liu, Xinguo
    Zeng, Xueying
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 4592 - 4600
  • [5] Iterative tensor eigen rank minimization for low-rank tensor completion
    Su, Liyu
    Liu, Jing
    Tian, Xiaoqing
    Huang, Kaiyu
    Tan, Shuncheng
    [J]. INFORMATION SCIENCES, 2022, 616 : 303 - 329
  • [6] Low-Rank Tensor Completion Method for Implicitly Low-Rank Visual Data
    Ji, Teng-Yu
    Zhao, Xi-Le
    Sun, Dong-Lin
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1162 - 1166
  • [7] Robust Low-Rank Tensor Ring Completion
    Huang, Huyan
    Liu, Yipeng
    Long, Zhen
    Zhu, Ce
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 : 1117 - 1126
  • [8] Low-rank tensor completion by Riemannian optimization
    Daniel Kressner
    Michael Steinlechner
    Bart Vandereycken
    [J]. BIT Numerical Mathematics, 2014, 54 : 447 - 468
  • [9] CROSS: EFFICIENT LOW-RANK TENSOR COMPLETION
    Zhang, Anru
    [J]. ANNALS OF STATISTICS, 2019, 47 (02): : 936 - 964
  • [10] Low-rank tensor completion by Riemannian optimization
    Kressner, Daniel
    Steinlechner, Michael
    Vandereycken, Bart
    [J]. BIT NUMERICAL MATHEMATICS, 2014, 54 (02) : 447 - 468