Some upper bounds on ordinal-valued Ramsey numbers for colourings of pairs

被引:0
|
作者
Leszek Aleksander Kołodziejczyk
Keita Yokoyama
机构
[1] University of Warsaw,Institute of Mathematics
[2] Japan Advanced Institute of Science and Technology,School of Information Science
来源
Selecta Mathematica | 2020年 / 26卷
关键词
Ramsey’s theorem; Paris–Harrington principle; -Large sets; Proof theory; Reverse mathematics; Primary 05D10; Secondary 03F30; 03F35; 03B30;
D O I
暂无
中图分类号
学科分类号
摘要
We study Ramsey’s theorem for pairs and two colours in the context of the theory of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-large sets introduced by Ketonen and Solovay. We prove that any 2-colouring of pairs from an ω300n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega ^{300n}$$\end{document}-large set admits an ωn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega ^n$$\end{document}-large homogeneous set. We explain how a formalized version of this bound gives a more direct proof, and a strengthening, of the recent result of Patey and Yokoyama (Adv Math 330: 1034–1070, 2018) stating that Ramsey’s theorem for pairs and two colours is ∀Σ20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall \Sigma ^0_2$$\end{document}-conservative over the axiomatic theory RCA0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf {RCA}}_{\textsf {0}}$$\end{document} (recursive comprehension).
引用
收藏
相关论文
共 34 条
  • [1] Some upper bounds on ordinal-valued Ramsey numbers for colourings of pairs
    Kolodziejczyk, Leszek Aleksander
    Yokoyama, Keita
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (04):
  • [2] A NOTE ON UPPER-BOUNDS FOR SOME RAMSEY NUMBERS
    NARA, C
    TACHIBANA, S
    [J]. DISCRETE MATHEMATICS, 1983, 45 (2-3) : 323 - 326
  • [3] Upper bounds for Ramsey numbers
    Shi, LS
    [J]. DISCRETE MATHEMATICS, 2003, 270 (1-3) : 251 - 265
  • [4] New upper bounds for Ramsey numbers
    Ru, HY
    Min, ZK
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (03) : 391 - 394
  • [5] Some constructive bounds on Ramsey numbers
    Kostochka, Alexandr
    Pudlak, Pavel
    Rodl, Vojtech
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (05) : 439 - 445
  • [6] New upper and lower bounds for Ramsey numbers
    Ru, HY
    Sheng, YJ
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2001, 22 (01) : 101 - 105
  • [7] New upper bounds for Ramsey numbers of books
    Chen, Xun
    Lin, Qizhong
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2024, 115
  • [8] Some geometric structures and bounds for Ramsey numbers
    Gonçalves, A
    Carmelo, ELM
    [J]. DISCRETE MATHEMATICS, 2004, 280 (1-3) : 29 - 38
  • [9] Sharp bounds for some multicolor Ramsey numbers
    Alon, N
    Rödl, V
    [J]. COMBINATORICA, 2005, 25 (02) : 125 - 141
  • [10] Sharp Bounds For Some Multicolor Ramsey Numbers
    Noga Alon*
    Vojtěch Rödl†
    [J]. Combinatorica, 2005, 25 : 125 - 141