Asymptotic expansion of the solution of the initial value problem for a singularly perturbed ordinary differential equation

被引:0
|
作者
O. Yu. Khachay
机构
[1] Ural State University,
来源
Differential Equations | 2008年 / 44卷
关键词
Cauchy Problem; Asymptotic Expansion; Entire Interval; Asymptotic Series; Singularly Perturb;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Cauchy problem for the nonlinear differential equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varepsilon \frac{{du}} {{dx}} = f(x,u),u(0,\varepsilon ) = R_0 , $$\end{document} where ɛ > 0 is a small parameter, f(x, u) ∈ C∞ ([0, d] × ℝ), R0 > 0, and the following conditions are satisfied: f(x, u) = x − up + O(x2 + |xu| + |u|p+1) as x, u → 0, where p ∈ ℕ \ {1} f(x, 0) > 0 for x > 0; fu2(x, u) < 0 for (x, u) ∈ [0, d] × (0, + ∞); Σ0+∞fu2(x, u) du = −∞. We construct three asymptotic expansions (external, internal, and intermediate) and prove that the matched asymptotic expansion approximates the solution uniformly on the entire interval [0, d].
引用
收藏
页码:282 / 285
页数:3
相关论文
共 50 条