Intelligent exponential sliding-mode control with uncertainty estimator for antilock braking systems

被引:14
|
作者
Hsu, Chun-Fei [1 ]
机构
[1] Tamkang Univ, Dept Elect Engn, 151 Yingzhuan Rd, New Taipei 25137, Taiwan
来源
NEURAL COMPUTING & APPLICATIONS | 2016年 / 27卷 / 06期
关键词
Antilock braking system (ABS); Intelligent sliding-mode control; Exponential reaching law; Fuzzy neural network; Functional neural network; NEURAL-NETWORK; TRACKING CONTROL; MOTOR DRIVE; FUZZY; DESIGN; HYBRID; ROBOT;
D O I
10.1007/s00521-015-1946-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of the antilock braking system (ABS) is to regulate the wheel longitudinal slip at its optimum point in order to generate the maximum braking force; however, the vehicle braking dynamic is highly nonlinear. To relax the requirement of detailed system dynamics, this paper proposes an intelligent exponential sliding-mode control (IESMC) system for an ABS. A functional recurrent fuzzy neural network (FRFNN) uncertainty estimator is designed to approximate the unknown nonlinear term of ABS dynamics, and the parameter adaptation laws are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the stable control performance. Since the outputs of the functional expansion unit are used as the output weights of the FRFNN uncertainty estimator, the FRFNN can effectively capture the input-output dynamic mapping. In addition, a nonlinear reaching law, which contains an exponential term of sliding surface to smoothly adapt the variations of sliding surface, is designed to reduce the level of the chattering phenomenon. Finally, the simulation results demonstrate that the proposed IESMC system can achieve robustness slip tracking performance in different road conditions.
引用
收藏
页码:1463 / 1475
页数:13
相关论文
共 50 条
  • [1] Adaptive exponential-reaching sliding-mode control for antilock braking systems
    Hsu, Chun-Fei
    Kuo, Tzu-Chun
    NONLINEAR DYNAMICS, 2014, 77 (03) : 993 - 1010
  • [2] Adaptive exponential-reaching sliding-mode control for antilock braking systems
    Chun-Fei Hsu
    Tzu-Chun Kuo
    Nonlinear Dynamics, 2014, 77 : 993 - 1010
  • [3] Self-learning fuzzy sliding-mode control for antilock braking systems
    Lin, CM
    Hsu, CF
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2003, 11 (02) : 273 - 278
  • [4] Sliding mode control with disturbance observer for antilock braking systems
    Hwang, JK
    Oh, KH
    Song, CK
    2005 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, VOLS 1 AND 2, 2005, : 277 - 281
  • [5] A Grey System Modeling Approach for Sliding-Mode Control of Antilock Braking System
    Kayacan, Erdal
    Oniz, Yesim
    Kaynak, Okyay
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (08) : 3244 - 3252
  • [6] Sliding mode measurement feedback control for antilock braking systems
    Ünsal, C
    Kachroo, P
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 1999, 7 (02) : 271 - 281
  • [7] Sliding mode measurement feedback control for antilock braking systems
    Carnegie Mellon Univ, Pittsburgh, United States
    IEEE Trans Control Syst Technol, 2 (271-281):
  • [8] Sliding Mode Control with Improved Exponential Reaching Law for Antilock Braking System
    Ping, Xu
    Yan, Zheng
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 2191 - 2194
  • [9] Investigation on adaptive sliding-mode control algorithms of automobile antilock-braking system
    Zhang Qi
    Liu Bo
    Liu Guofu
    Xie Xufen
    ISTM/2007: 7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS, 2007, : 5318 - 5321
  • [10] Disturbance/Uncertainty Estimator Based Integral Sliding-Mode Control
    Kurkcu, Burak
    Kasnakoglu, Cosku
    Efe, Mehmet Onder
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (11) : 3940 - 3947