The Integral Tree Representation of the Symmetric Group

被引:0
|
作者
Sarah Whitehouse
机构
[1] Universitéd'Artois—Pôle de Lens,Laboratoire de Géométrie
来源
关键词
symmetric group representation; free Lie algebra;
D O I
暂无
中图分类号
学科分类号
摘要
Let Tn be the space of fully-grown n-trees and let Vn and Vn′ be the representations of the symmetric groups Σn and Σn+1 respectively on the unique non-vanishing reduced integral homology group of this space. Starting from combinatorial descriptions of Vn and Vn′, we establish a short exact sequence of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}\Sigma _{n + 1} $$ \end{document}-modules, giving a description of Vn′ in terms of Vn and Vn+1. This short exact sequence may also be deduced from work of Sundaram.
引用
收藏
页码:317 / 326
页数:9
相关论文
共 50 条