A class of nonmonotone conjugate gradient methods for nonconvex functions

被引:2
|
作者
Liu Y. [1 ]
Wei Z. [2 ]
机构
[1] Dept. of Math., Yunan Univ., Kunming
[2] Dept. of Math, and Inform. Sci., Guangxi Univ., Nanning
基金
中国国家自然科学基金;
关键词
Global convergence; Nonmonotone conjugate gradient method; Nonmonotone line search; Unconstrained optimization;
D O I
10.1007/s11766-002-0047-1
中图分类号
学科分类号
摘要
This paper discusses the global convergence of a class of nonmonotone conjugate gradient methods (NM methods) for nonconvex object functions. This class of methods includes the nonmonotone counterpart of modified Polak-Ribière method and modified Hestenes-Stiefel method as special cases. © 2002, Springer Verlag. All rights reserved.
引用
收藏
页码:208 / 214
页数:6
相关论文
共 50 条
  • [1] A CLASSOF NONMONOTONE CONJUGATE GRADIENT METHODSFOR NONCONVEX FUNCTIONS
    Liu Yun Wei ZengxinDept.ofMath.
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2002, (02) : 208 - 214
  • [2] A class of nonmonotone conjugate gradient methods for unconstrained optimization
    Liu, GH
    Jing, LL
    Han, LX
    Han, D
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 101 (01) : 127 - 140
  • [3] A Class of Nonmonotone Conjugate Gradient Methods for Unconstrained Optimization
    G. H. Liu
    L. L. Jing
    L. X. Han
    D. Han
    [J]. Journal of Optimization Theory and Applications, 1999, 101 : 127 - 140
  • [4] A class of improved conjugate gradient methods for nonconvex unconstrained optimization
    Hu, Qingjie
    Zhang, Hongrun
    Zhou, Zhijuan
    Chen, Yu
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2023, 30 (04)
  • [5] A new class of Conjugate Gradient Methods with extended Nonmonotone Line Search
    Liu, Hailin
    Li, Xiaoyong
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 : 147 - 154
  • [6] A new class of nonmonotone conjugate gradient training algorithms
    Livieris, Ioannis E.
    Pintelas, Panagiotis
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 404 - 413
  • [8] Family weak conjugate gradient algorithms and their convergence analysis for nonconvex functions
    Yuan, Gonglin
    Wang, Xiaoliang
    Sheng, Zhou
    [J]. NUMERICAL ALGORITHMS, 2020, 84 (03) : 935 - 956
  • [9] Family weak conjugate gradient algorithms and their convergence analysis for nonconvex functions
    Gonglin Yuan
    Xiaoliang Wang
    Zhou Sheng
    [J]. Numerical Algorithms, 2020, 84 : 935 - 956
  • [10] A modified scaled conjugate gradient method with global convergence for nonconvex functions
    Babaie-Kafaki, Saman
    Ghanbari, Reza
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (03) : 465 - 477