Let μ(N,v,L)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu (N,v,L)$$\end{document} be the Myerson value for graph games (N, v, L). We call a link ij of a graph L safe if μk(N,v,L)≥μk(N,v,L\{ij})\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu _k(N,v,L)\ge \mu _k(N,v,L\setminus \{ij\})$$\end{document} for any k∈N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k\in N$$\end{document}, which means that none of players benefits from breaking the link ij. A link ij∈L\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ij\in L$$\end{document} is called a bridge if N splits into more components after ij is deleted. We show that if (N, v) is convex, then any bridge is safe. Furthermore, if (N, v) is strictly convex, then a link is safe if and only if it is a bridge.