Stochastic monotonicity of the MLEs of parameters in exponential simple step-stress models under Type-I and Type-II censoring

被引:0
|
作者
N. Balakrishnan
G. Iliopoulos
机构
[1] McMaster University,Department of Mathematics and Statistics
[2] University of Piraeus,Department of Statistics and Insurance Science
来源
Metrika | 2010年 / 72卷
关键词
Exponential distribution; Maximum likelihood estimation; Step-stress models; Type-II censoring; Type-I censoring; Exact confidence intervals; Trinomial distribution; Multivariate stochastic ordering;
D O I
暂无
中图分类号
学科分类号
摘要
In two recent papers by Balakrishnan et al. (J Qual Technol 39:35–47, 2007; Ann Inst Stat Math 61:251–274, 2009), the maximum likelihood estimators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\theta}_{1}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\theta}_{2}}$$\end{document} of the parameters θ1 and θ2 have been derived in the framework of exponential simple step-stress models under Type-II and Type-I censoring, respectively. Here, we prove that these estimators are stochastically monotone with respect to θ1 and θ2, respectively, which has been conjectured in these papers and then utilized to develop exact conditional inference for the parameters θ1 and θ2. For proving these results, we have established a multivariate stochastic ordering of a particular family of trinomial distributions under truncation, which is also of independent interest.
引用
收藏
页码:89 / 109
页数:20
相关论文
共 50 条