Stability of equilibrium states in a simple system with unilateral contact and Coulomb friction

被引:0
|
作者
S. Basseville
A. Leger
机构
[1] CNRS,Laboratoire de Mécanique et d’Acoustique
[2] Ecole des Mines de Paris,undefined
来源
关键词
Discrete dynamics; Unilateral contact; Coulomb friction; Klarbring’s system; Stability;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to study the stability of equilibrium states in a mechanical system involving unilateral contact with Coulomb friction. Since the assumptions made in classical stability theorems are not satisfied with this class of systems, we return to the basic definitions of stability by studying the time evolution of the distance between a given equilibrium and the solution of a Cauchy problem where the initial conditions are in a neighborhood of the equilibrium. It was recently established that the dynamics is well posed in the case of analytical data. In the present study, we focus in particular on the stability of the equilibrium states under a constant force and deal only with a simple mass-spring system in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^{2}$$\end{document}.
引用
收藏
页码:403 / 428
页数:25
相关论文
共 50 条