High-Dimensional Principal Projections

被引:0
|
作者
André Mas
Frits Ruymgaart
机构
[1] Université Montpellier II,Institut de Mathématiques et de Modélisation de Montpellier
[2] Texas Tech University,Department of Mathematics and Statistics
来源
关键词
Funtional principal component analysis; Dimension reduction; Nonparametric functional regression; Covariance operator; Perturbation theory; Primary 62H25; 62G08; Secondary 47A55;
D O I
暂无
中图分类号
学科分类号
摘要
The principal component analysis (PCA) is a famous technique from multivariate statistics. It is frequently carried out in dimension reduction either for functional data or in a high dimensional framework. To that aim PCA yields the eigenvectors φ^ii\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \widehat{\varphi }_{i}\right) _{i}$$\end{document} of the covariance operator of a sample of interest. Dimension reduction is obtained by projecting on the eigenspaces spanned by the φ^i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{\varphi }_{i}$$\end{document}’s usually endowed with nice properties in terms of optimal information. We focus on the empirical eigenprojectors in the functional PCA of a n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-sample and prove several non asymptotic results. More specifically we provide an upper bound for their mean square risk. This rate does not depend on the rate of decrease of the eigenvalues which seems to be a new result. We also derive a lower bound on the risk. The latter matches the upper bound up to a logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log n$$\end{document} term. The results are applied in a nonparametric functional estimation model.
引用
收藏
页码:35 / 63
页数:28
相关论文
共 50 条
  • [1] High-Dimensional Principal Projections
    Mas, Andre
    Ruymgaart, Frits
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (01) : 35 - 63
  • [2] High-dimensional sufficient dimension reduction through principal projections
    Pircalabelu, Eugen
    Artemiou, Andreas
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 1804 - 1830
  • [3] Cantor sets with high-dimensional projections
    Frolkina, Olga
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2020, 275
  • [4] Interpreting High-Dimensional Projections With Capacity
    Zhang, Yang
    Liu, Jisheng
    Lai, Chufan
    Zhou, Yuan
    Chen, Siming
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (09) : 6038 - 6055
  • [5] Using projections to visually cluster high-dimensional
    Hinneburg, A
    Keim, D
    Wawryniuk, M
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2003, 5 (02) : 14 - 25
  • [6] Forecasting High-Dimensional Covariance Matrices Using High-Dimensional Principal Component Analysis
    Shigemoto, Hideto
    Morimoto, Takayuki
    [J]. AXIOMS, 2022, 11 (12)
  • [7] High-Dimensional Clustering via Random Projections
    Laura Anderlucci
    Francesca Fortunato
    Angela Montanari
    [J]. Journal of Classification, 2022, 39 : 191 - 216
  • [8] High-Dimensional Clustering via Random Projections
    Anderlucci, Laura
    Fortunato, Francesca
    Montanari, Angela
    [J]. JOURNAL OF CLASSIFICATION, 2022, 39 (01) : 191 - 216
  • [9] Optimal Sets of Projections of High-Dimensional Data
    Lehmann, Dirk J.
    Theisel, Holger
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (01) : 609 - 618
  • [10] Local projections for high-dimensional outlier detection
    Thomas Ortner
    Peter Filzmoser
    Maia Rohm
    Sarka Brodinova
    Christian Breiteneder
    [J]. METRON, 2021, 79 : 189 - 206