A parts list for fungal cellulosomes revealed by comparative genomics

被引:0
|
作者
Charles H. Haitjema
Sean P. Gilmore
John K. Henske
Kevin V. Solomon
Randall de Groot
Alan Kuo
Stephen J. Mondo
Asaf A. Salamov
Kurt LaButti
Zhiying Zhao
Jennifer Chiniquy
Kerrie Barry
Heather M. Brewer
Samuel O. Purvine
Aaron T. Wright
Matthieu Hainaut
Brigitte Boxma
Theo van Alen
Johannes H. P. Hackstein
Bernard Henrissat
Scott E. Baker
Igor V. Grigoriev
Michelle A. O'Malley
机构
[1] University of California,Department of Chemical Engineering
[2] US Department of Energy Joint Genome Institute,Biological Sciences Division
[3] Environmental Molecular Sciences Laboratory,Department of Evolutionary Microbiology
[4] Earth and Biological Sciences Directorate,Department of Biological Sciences
[5] Pacific Northwest National Laboratory,Department of Plant and Microbial Biology
[6] Earth and Biological Sciences Directorate,Agricultural and Biological Engineering
[7] Pacific Northwest National Laboratory,Department of Microbiology
[8] Architecture et Fonction des Macromolécules Biologiques,undefined
[9] Centre National de la Recherche Scientifique,undefined
[10] Aix-Marseille Université,undefined
[11] 13288 Marseille,undefined
[12] INRA,undefined
[13] USC 1408 AFMB,undefined
[14] Marseille,undefined
[15] Radboud University,undefined
[16] 6525 AJ Nijmegen,undefined
[17] King Abdulaziz University,undefined
[18] 23218 Jeddah,undefined
[19] University of California,undefined
[20] Purdue University,undefined
[21] Faculty of Science,undefined
[22] Radboud University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Cellulosomes are large, multiprotein complexes that tether plant biomass-degrading enzymes together for improved hydrolysis1. These complexes were first described in anaerobic bacteria, where species-specific dockerin domains mediate the assembly of enzymes onto cohesin motifs interspersed within protein scaffolds1. The versatile protein assembly mechanism conferred by the bacterial cohesin–dockerin interaction is now a standard design principle for synthetic biology2,3. For decades, analogous structures have been reported in anaerobic fungi, which are known to assemble by sequence-divergent non-catalytic dockerin domains (NCDDs)4. However, the components, modular assembly mechanism and functional role of fungal cellulosomes remain unknown5,6. Here, we describe a comprehensive set of proteins critical to fungal cellulosome assembly, including conserved scaffolding proteins unique to the Neocallimastigomycota. High-quality genomes of the anaerobic fungi Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis were assembled with long-read, single-molecule technology. Genomic analysis coupled with proteomic validation revealed an average of 312 NCDD-containing proteins per fungal strain, which were overwhelmingly carbohydrate active enzymes (CAZymes), with 95 large fungal scaffoldins identified across four genera that bind to NCDDs. Fungal dockerin and scaffoldin domains have no similarity to their bacterial counterparts, yet several catalytic domains originated via horizontal gene transfer with gut bacteria. However, the biocatalytic activity of anaerobic fungal cellulosomes is expanded by the inclusion of GH3, GH6 and GH45 enzymes. These findings suggest that the fungal cellulosome is an evolutionarily chimaeric structure—an independently evolved fungal complex that co-opted useful activities from bacterial neighbours within the gut microbiome.
引用
收藏
相关论文
共 50 条
  • [1] A parts list for fungal cellulosomes revealed by comparative genomics
    Haitjema, Charles H.
    Gilmore, Sean P.
    Henske, John K.
    Solomon, Kevin V.
    de Groot, Randall
    Kuo, Alan
    Mondo, Stephen J.
    Salamov, Asaf A.
    LaButti, Kurt
    Zhao, Zhiying
    Chiniquy, Jennifer
    Barry, Kerrie
    Brewer, Heather M.
    Purvine, Samuel O.
    Wright, Aaron T.
    Hainaut, Matthieu
    Boxma, Brigitte
    van Alen, Theo
    Hackstein, Johannes H. P.
    Henrissat, Bernard
    Baker, Scott E.
    Grigoriev, Igor V.
    O'Malley, Michelle A.
    NATURE MICROBIOLOGY, 2017, 2 (08):
  • [2] Parts list for fungal cellulosomes revealed by proteomics and comparative genomics
    Gilmore, Sean
    Haitjema, Charles
    Henske, John
    Solomon, Kevin
    de Groot, Randall
    Kuo, Alan
    Mondo, Stephen
    Salamov, Asaf
    LaButti, Kurt
    Brewer, Heather
    Purvine, Samuel
    Wright, Aaron
    Baker, Scott
    Grigoriev, Igor
    O'Malley, Michelle
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [3] Comparative genomics: Surveys of a finite parts list.
    Gerstein, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 220 : U172 - U172
  • [4] Plant functional genomics: beyond the parts list
    Stewart, CN
    TRENDS IN PLANT SCIENCE, 2005, 10 (12) : 561 - 562
  • [5] Comparative genomics and core fungal genes
    Hsiang, T.
    PHYTOPATHOLOGY, 2004, 94 (06) : S42 - S42
  • [6] fPoxDB: fungal peroxidase database for comparative genomics
    Jaeyoung Choi
    Nicolas Détry
    Ki-Tae Kim
    Fred O Asiegbu
    Jari PT Valkonen
    Yong-Hwan Lee
    BMC Microbiology, 14
  • [7] fPoxDB: fungal peroxidase database for comparative genomics
    Choi, Jaeyoung
    Detry, Nicolas
    Kim, Ki-Tae
    Asiegbu, Fred O.
    Valkonen, Jari P. T.
    Lee, Yong-Hwan
    BMC MICROBIOLOGY, 2014, 14
  • [8] Designing chimeric enzymes inspired by fungal cellulosomes
    Gilmore, Sean P.
    Lillington, Stephen P.
    Haitjema, Charles H.
    de Groot, Randall
    O'Malley, Michelle A.
    SYNTHETIC AND SYSTEMS BIOTECHNOLOGY, 2020, 5 (01) : 23 - 32
  • [9] Comparative genomics reveals the origin of fungal hyphae and multicellularity
    Kiss, Eniko
    Hegedus, Botond
    Viragh, Mate
    Varga, Torda
    Merenyi, Zsolt
    Koszo, Tamas
    Balint, Balazs
    Prasanna, Arun N.
    Krizsan, Krisztina
    Kocsube, Sandor
    Riquelme, Meritxell
    Takeshita, Norio
    Nagy, Laszlo G.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [10] Comparative genomics reveals the origin of fungal hyphae and multicellularity
    Enikő Kiss
    Botond Hegedüs
    Máté Virágh
    Torda Varga
    Zsolt Merényi
    Tamás Kószó
    Balázs Bálint
    Arun N. Prasanna
    Krisztina Krizsán
    Sándor Kocsubé
    Meritxell Riquelme
    Norio Takeshita
    László G. Nagy
    Nature Communications, 10