A distance matrix based algorithm for solving the traveling salesman problem

被引:0
|
作者
Shengbin Wang
Weizhen Rao
Yuan Hong
机构
[1] North Carolina A&T State University,Department of Marketing, Transportation and Supply Chain, College of Business and Economics
[2] Shandong University of Science and Technology,College of Economics and Management
[3] Illinois Institute of Technology,Department of Computer Science
来源
Operational Research | 2020年 / 20卷
关键词
Traveling salesman problem; Distance matrix method; Greedy heuristic; Savings heuristic; Construction heuristics;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a new algorithm for solving the well-known traveling salesman problem (TSP). This algorithm applies the Distance Matrix Method to the Greedy heuristic that is widely used in the TSP literature. In particular, it is shown that there exists a significant negative correlation between the variance of distance matrix and the performance of the Greedy heuristic, that is, the less the variance of distance matrix among the customer nodes is, the better solution the Greedy heuristic can provide. Thus the Distance Matrix Method can be used to improve the Greedy heuristic’s performance. Based on this observation, a method called Minimizing the Variance of Distance Matrix (MVODM) is proposed. This method can effectively improve the Greedy heuristic when applied. In order to further improve the efficiency, a heuristic that can quickly provide approximate solutions of the MVODM is developed. Finally, an algorithm combining this approximate MVODM method and Greedy heuristic is developed. Extensive computational experiments on a well-established test suite consisting of 82 benchmark instances with city numbers ranging from 1000 to 10,000,000 demonstrate that this algorithm not only improves the average tour quality by 40.1%, but also reduces the running time by 21.7%, comparing with the Greedy algorithm. More importantly, the performance of the proposed approach can beat the Savings heuristic, the best known construction heuristic in the TSP literature.
引用
收藏
页码:1505 / 1542
页数:37
相关论文
共 50 条
  • [1] A distance matrix based algorithm for solving the traveling salesman problem
    Wang, Shengbin
    Rao, Weizhen
    Hong, Yuan
    OPERATIONAL RESEARCH, 2020, 20 (03) : 1505 - 1542
  • [2] AN ALGORITHM FOR SOLVING THE TRAVELING SALESMAN PROBLEM
    LITTLE, JDC
    MURTY, KG
    KAREL, C
    SWEENEY, DW
    OPERATIONS RESEARCH, 1963, 11 : B48 - B48
  • [3] A CONVEX HULL BASED ALGORITHM FOR SOLVING THE TRAVELING SALESMAN PROBLEM
    Nuriyeva, F.
    Kutucu, H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (02): : 412 - 420
  • [4] Hybrid Algorithm for Solving Traveling Salesman Problem
    Zhao, Ping
    Xu, Degang
    2019 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE APPLICATIONS AND TECHNOLOGIES (AIAAT 2019), 2019, 646
  • [5] A Dragonfly Algorithm for Solving Traveling Salesman Problem
    Hammouri, Abdelaziz I.
    Abu Samra, Enas Tawfiq
    Al-Betar, Mohammed Azmi
    Khalil, Raid M.
    Alasmer, Ziad
    Kanan, Monther
    2018 8TH IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE 2018), 2018, : 136 - 141
  • [6] A New Genetic Algorithm for solving Traveling Salesman Problem
    Bai Xiaojuan
    Zhou Liang
    PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE: APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE, 2009, : 451 - +
  • [7] Solving the Traveling Salesman Problem: A Modified Metaheuristic Algorithm
    Yousefikhoshbakht, Majid
    COMPLEXITY, 2021, 2021
  • [8] An Adaptive Genetic Algorithm for Solving Traveling Salesman Problem
    Wang, Jina
    Huang, Jian
    Rao, Shuqin
    Xue, Shaoe
    Yin, Jian
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2008, 5227 : 182 - 189
  • [9] A Study of Solving Traveling Salesman Problem with Genetic Algorithm
    Sun, Chutian
    2020 9TH INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY AND MANAGEMENT (ICITM 2020), 2020, : 307 - 311
  • [10] An Improved Genetic Algorithm for Solving the Traveling Salesman Problem
    Chen, Peng
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 397 - 401