Toward Non-interactive Zero-Knowledge Proofs for NP from LWE

被引:0
|
作者
Ron D. Rothblum
Adam Sealfon
Katerina Sotiraki
机构
[1] Technion,
[2] UC Berkeley,undefined
来源
Journal of Cryptology | 2021年 / 34卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Non-interactive zero-knowledge (NIZK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {NIZK}$$\end{document}) is a fundamental primitive that is widely used in the construction of cryptographic schemes and protocols. Our main result is a reduction from constructing NIZK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {NIZK}$$\end{document} proof systems for all of NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {NP}$$\end{document} based on LWE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {LWE}$$\end{document}, to constructing a NIZK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {NIZK}$$\end{document} proof system for a particular computational problem on lattices, namely a decisional variant of the bounded distance decoding (BDD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {BDD}$$\end{document}) problem. That is, we show that assuming LWE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {LWE}$$\end{document}, every language L∈NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L \in \mathbf {NP}$$\end{document} has a NIZK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {NIZK}$$\end{document} proof system if (and only if) the decisional BDD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {BDD}$$\end{document} problem has a NIZK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {NIZK}$$\end{document} proof system. This (almost) confirms a conjecture of Peikert and Vaikuntanathan (CRYPTO, 2008). To construct our NIZK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {NIZK}$$\end{document} proof system, we introduce a new notion that we call prover-assisted oblivious ciphertext sampling (POCS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {POCS}$$\end{document}), which we believe to be of independent interest. This notion extends the idea of oblivious ciphertext sampling, which allows one to sample ciphertexts without knowing the underlying plaintext. Specifically, we augment the oblivious ciphertext sampler with access to an (untrusted) prover to help it accomplish this task. We show that the existence of encryption schemes with a POCS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {POCS}$$\end{document} procedure, as well as some additional natural requirements, suffices for obtaining NIZK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {NIZK}$$\end{document} proofs for NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {NP}$$\end{document}. We further show that such encryption schemes can be instantiated based on LWE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {LWE}$$\end{document}, assuming the existence of a NIZK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {NIZK}$$\end{document} proof system for the decisional BDD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {BDD}$$\end{document} problem.
引用
收藏
相关论文
共 50 条
  • [1] Toward Non-interactive Zero-Knowledge Proofs for NP from LWE
    Rothblum, Ron D.
    Sealfon, Adam
    Sotiraki, Katerina
    [J]. JOURNAL OF CRYPTOLOGY, 2021, 34 (01)
  • [2] Non-interactive Zero-Knowledge Functional Proofs
    Zeng, Gongxian
    Lai, Junzuo
    Huang, Zhengan
    Zhang, Linru
    Wang, Xiangning
    Lam, Kwok-Yan
    Wang, Huaxiong
    Weng, Jian
    [J]. ADVANCES IN CRYPTOLOGY, ASIACRYPT 2023, PT V, 2023, 14442 : 236 - 268
  • [3] Short Non-interactive Zero-Knowledge Proofs
    Groth, Jens
    [J]. ADVANCES IN CRYPTOLOGY - ASIACRYPT 2010, 2010, 6477 : 341 - 358
  • [4] Non-interactive Zero-Knowledge Proofs to Multiple Verifiers
    Yang, Kang
    Wang, Xiao
    [J]. ADVANCES IN CRYPTOLOGY-ASIACRYPT 2022, PT III, 2022, 13793 : 517 - 546
  • [5] Non-Interactive Zero-Knowledge Proofs for Composite Statements
    Agrawal, Shashank
    Ganesh, Chaya
    Mohassel, Payman
    [J]. ADVANCES IN CRYPTOLOGY - CRYPTO 2018, PT III, 2018, 10993 : 643 - 673
  • [6] Necessary and sufficient assumptions for non-interactive zero-knowledge proofs of knowledge for all NP relations
    De Santis, A
    Di Crescenzo, G
    Persiano, G
    [J]. AUTOMATA LANGUAGES AND PROGRAMMING, 2000, 1853 : 451 - 462
  • [7] Pairing-Based Non-interactive Zero-Knowledge Proofs
    Groth, Jens
    [J]. PAIRING-BASED CRYPTOGRAPHY-PAIRING 2010, 2010, 6487 : 206 - 206
  • [8] Group Signature Based on Non-interactive Zero-Knowledge Proofs
    Zhou Fucai
    Xu Jian
    Li Hui
    Wang Lanlan
    [J]. CHINA COMMUNICATIONS, 2011, 8 (02) : 34 - 41
  • [9] Succinct non-interactive zero-knowledge proofs with preprocessing for LOGSNP
    Kalai, Yael Tauman
    Raz, Ran
    [J]. 47TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2006, : 355 - +
  • [10] On non-interactive zero-knowledge proofs of knowledge in the shared random string model
    Persiano, Giuseppe
    Visconti, Ivan
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006, PROCEEDINGS, 2006, 4162 : 753 - 764