Let Xi = {Xi(t), t ∈ T} be i.i.d. copies of a centered Gaussian process X = {X(t), t ∈ T} with values in
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ {\mathbb{R}^d} $\end{document} defined on a separable metric space T. It is supposed that X is bounded. We consider the asymptotic behavior of convex hulls
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {W_n} = {\text{conv}}\left\{ {{X_1}(t), \ldots, {X_n}(t),\,\,t \in T} \right\} $$\end{document}and show that, with probability 1,
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathop {{\lim }}\limits_{n \to \infty } \frac{1}{{\sqrt {{2\ln n}} }}{W_n} = W $$\end{document}(in the sense of Hausdorff distance), where the limit shape W is defined by the covariance structure of X: W = conv{Kt, t ∈ T}, Kt being the concentration ellipsoid of X(t). We also study the asymptotic behavior of the mathematical expectations Ef(Wn), where f is an homogeneous functional.