FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

被引:2
|
作者
Manijak M.P. [1 ]
Nielsen H.B. [1 ]
机构
[1] Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet
关键词
Gene Expression Data; Response Direction; Gene Expression Signature; Dynamic Graph; Gene Expression Response;
D O I
10.1186/1756-0500-4-181
中图分类号
学科分类号
摘要
Background: Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially circumvented by instead matching gene expression signatures to signatures of other experiments. Findings. To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700 Arabidopsis microarray experiments. Conclusions: Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/. © 2011 Nielsen et al; licensee BioMed Central Ltd.
引用
收藏
相关论文
共 50 条
  • [1] Gene expression signatures in patients with severely impaired spermatogenesis - whole gene expression study & meta-analysis
    Hodic, A.
    Maver, A.
    Zorn, B.
    Petrovic, D.
    Peterlin, B.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2018, 26 : 135 - 136
  • [2] A Meta-analysis of Gene Expression Signatures of Blood Pressure and Hypertension
    Huan, Tianxiao
    Esko, Tonu
    Peters, Marjolein J.
    Pilling, Luke C.
    Schramm, Katharina
    Schurmann, Claudia
    Chen, Brian H.
    Liu, Chunyu
    Joehanes, Roby
    Johnson, Andrew D.
    Yao, Chen
    Ying, Sai-xia
    Courchesne, Paul
    Milani, Lili
    Raghavachari, Nalini
    Wang, Richard
    Liu, Poching
    Reinmaa, Eva
    Dehghan, Abbas
    Hofman, Albert
    Uitterlinden, Andre G.
    Hernandez, Dena G.
    Bandinelli, Stefania
    Singleton, Andrew
    Melzer, David
    Metspalu, Andres
    Carstensen, Maren
    Grallert, Harald
    Herder, Christian
    Meitinger, Thomas
    Peters, Annette
    Roden, Michael
    Waldenberger, Melanie
    Doerr, Marcus
    Felix, Stephan B.
    Zeller, Tanja
    Vasan, Ramachandran
    O'Donnell, Christopher J.
    Munson, Peter J.
    Yang, Xia
    Prokisch, Holger
    Voelker, Uwe
    van Meurs, Joyce B. J.
    Ferrucci, Luigi
    Levy, Daniel
    PLOS GENETICS, 2015, 11 (03):
  • [3] GESgnExt: Gene Expression Signature Extraction and Meta-Analysis on Gene Expression Omnibus
    Yan, Shankai
    Wong, Ka-Chun
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (01) : 311 - 318
  • [4] OMiCC: An expanded and enhanced platform for meta-analysis of public gene expression data
    Liu, Candace C.
    Guo, Yongjian
    Vrindten, Kiera L.
    Lau, William W.
    Sparks, Rachel
    Tsang, John S.
    STAR PROTOCOLS, 2022, 3 (03):
  • [5] Meta-Analysis Based Variable Selection for Gene Expression Data
    Li, Quefeng
    Wang, Sijian
    Huang, Chiang-Ching
    Yu, Menggang
    Shao, Jun
    BIOMETRICS, 2014, 70 (04) : 872 - 880
  • [6] Meta-analysis of gene expression profiles in preeclampsia
    Vennou, Konstantina E.
    Kontou, Panagiota, I
    Braliou, Georgia G.
    Bagos, Pantelis G.
    PREGNANCY HYPERTENSION-AN INTERNATIONAL JOURNAL OF WOMENS CARDIOVASCULAR HEALTH, 2020, 19 : 52 - 60
  • [7] Meta-analysis of aneuploid cell gene expression
    Mary Muers
    Nature Reviews Genetics, 2012, 13 (9) : 597 - 597
  • [8] Comprehensive meta-analysis reveals distinct gene expression signatures of MASLD progression
    Piras, Ignazio S.
    Distefano, Johanna K.
    LIFE SCIENCE ALLIANCE, 2024, 7 (06)
  • [9] Gene class expression: analysis tool of Gene Ontology terms with gene expression data
    Pereira, Gislaine S. P.
    Brandao, Rodrigo M.
    Giuliatti, Silvana
    Zago, Marco A.
    Silva, Wilson A., Jr.
    GENETICS AND MOLECULAR RESEARCH, 2006, 5 (01) : 108 - 114
  • [10] Gene set meta-analysis with Quantitative Set Analysis for Gene Expression (QuSAGE)
    Meng, Hailong
    Yaari, Gur
    Bolen, Christopher R.
    Avey, Stefan
    Kleinstein, Steven H.
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (04) : 1 - 10