On the efficiency of two variants of Kurchatov’s method for solving nonlinear systems

被引:0
|
作者
José Antonio Ezquerro
Angela Grau
Miquel Grau-Sánchez
Miguel Ángel Hernández
机构
[1] University of La Rioja,Department of Mathematics and Computation
[2] Technical University of Catalonia,Department of Applied Mathematics II
来源
Numerical Algorithms | 2013年 / 64卷
关键词
Divided difference; -order of convergence; Nonlinear equations; Kurchatov’s method; Iterative methods; Computational efficiency; 47H99; 65H10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Kurchatov’smethod and construct two variants of this method for solving systems of nonlinear equations and deduce their local R-orders of convergence in a direct symbolic computation. We also propose a generalization to several variables of the efficiency used in the scalar case and analyse the efficiencies of the three methods when they are used to solve systems of nonlinear equations.
引用
收藏
页码:685 / 698
页数:13
相关论文
共 50 条
  • [1] On the efficiency of two variants of Kurchatov's method for solving nonlinear systems
    Antonio Ezquerro, Jose
    Grau, Angela
    Grau-Sanchez, Miquel
    Angel Hernandez, Miguel
    NUMERICAL ALGORITHMS, 2013, 64 (04) : 685 - 698
  • [2] New Variants of Newton's Method for Solving Nonlinear Equations
    Sapkota, Buddhi Prasad
    Jnawali, Jivandhar
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (04): : 2419 - 2430
  • [3] Derivative-Free Kurchatov-Type Accelerating Iterative Method for Solving Nonlinear Systems: Dynamics and Applications
    Wang, Xiaofeng
    Chen, Xiaohe
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [4] Some Geometric Constructions of Two Variants of Newton's Method to Solving Nonlinear Equations with Multiple Roots
    Cadenas, Carlos E. R.
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2018, 50 (01): : 15 - 21
  • [5] Two modifications of efficient newton-type iterative method and two variants of Super-Halley's method for solving nonlinear equations
    Hu, Yunhong
    Fang, Liang
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2019, 19 (01) : 13 - 22
  • [6] A modification on Newton's method for solving systems of nonlinear equations
    Biazar, Jafar
    Ghanbari, Behzad
    World Academy of Science, Engineering and Technology, 2009, 58 : 897 - 901
  • [7] Conformable vector Traub's method for solving nonlinear systems
    Wang, Xiaofeng
    Xu, Jiayi
    NUMERICAL ALGORITHMS, 2024, 97 (04) : 1563 - 1582
  • [8] Two variants of solving the problem of nonlinear parameters estimation
    Seletkov, V.L.
    Izvestiya Vysshikh Uchebnykh Zavedenij. Radioelektronika, 2001, 44 (07): : 64 - 67
  • [9] Modifying Kurchatov's method to find multiple roots of nonlinear equations
    Cordero, Alicia
    Garrido, Neus
    Torregrosa, Juan R.
    Triguero-Navarro, Paula
    APPLIED NUMERICAL MATHEMATICS, 2024, 198 : 11 - 21
  • [10] Extended Kurchatov-type methods for solving nonlinear equations
    Argyros, Ioannis k.
    Shakhno, S.
    Regmi, S.
    Havdiak, M.
    JOURNAL OF APPLIED AND NUMERICAL ANALYSIS, 2024, 2 : 3 - 17