Avoided crossing of rattler modes in thermoelectric materials

被引:0
|
作者
Mogens Christensen
Asger B. Abrahamsen
Niels B. Christensen
Fanni Juranyi
Niels H. Andersen
Kim Lefmann
Jakob Andreasson
Christian R. H. Bahl
Bo B. Iversen
机构
[1] Center for Energy Materials,Department of Chemistry and Interdisciplinary Nanoscience Center iNANO
[2] University of Aarhus,Materials Research Department
[3] Risø National Laboratory for Sustainable Energy,Department of Applied Physics
[4] Technical University of Denmark,undefined
[5] Laboratory for Neutron Scattering,undefined
[6] ETHZ and PSI,undefined
[7] Nano-Science Center,undefined
[8] Niels Bohr Institute,undefined
[9] University of Copenhagen,undefined
[10] Chalmers University of Technology,undefined
来源
Nature Materials | 2008年 / 7卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Engineering of materials with specific physical properties has recently focused on the effect of nano-sized ‘guest domains’ in a ‘host matrix’ that enable tuning of electrical, mechanical, photo-optical or thermal properties. A low thermal conductivity is a prerequisite for obtaining effective thermoelectric materials, and the challenge is to limit the conduction of heat by phonons, without simultaneously reducing the charge transport. This is named the ‘phonon glass–electron crystal’ concept and may be realized in host–guest systems. The guest entities are believed to have independent oscillations, so-called rattler modes, which scatter the acoustic phonons and reduce the thermal conductivity. We have investigated the phonon dispersion relation in the phonon glass–electron crystal material Ba8Ga16Ge30 using neutron triple-axis spectroscopy. The results disclose unambiguously the theoretically predicted avoided crossing of the rattler modes and the acoustic-phonon branches. The observed phonon lifetimes are longer than expected, and a new explanation for the low κL is provided.
引用
收藏
页码:811 / 815
页数:4
相关论文
共 50 条
  • [1] Avoided crossing of rattler modes in thermoelectric materials
    Christensen, Mogens
    Abrahamsen, Asger B.
    Christensen, Niels B.
    Juranyi, Fanni
    Andersen, Niels H.
    Lefmann, Kim
    Andreasson, Jakob
    Bahl, Christian R. H.
    Iversen, Bo B.
    NATURE MATERIALS, 2008, 7 (10) : 811 - 815
  • [2] AVOIDED CROSSING OF MODES OF NON-RADIAL STELLAR OSCILLATIONS
    AIZENMAN, M
    SMEYERS, P
    WEIGERT, A
    ASTRONOMY & ASTROPHYSICS, 1977, 58 (1-2) : 41 - 46
  • [3] AVOIDED CROSSING OF SURFACE PHONON MODES ON THE CLEAN MO(001) SURFACE
    HULPKE, E
    SMILGIES, DM
    PHYSICAL REVIEW B, 1990, 42 (14): : 9203 - 9205
  • [4] Avoided Crossing and Synchronization
    Sekii, T.
    Shibahashi, H.
    PROGRESS IN PHYSICS OF THE SUN AND STARS: A NEW ERA IN HELIO- AND ASTEROSEISMOLOGY, 2013, 479 : 573 - 578
  • [5] An acoustic demonstration of an avoided crossing
    Newman, William
    Skinner, Alexandria
    Hilbert, Shawn A.
    AMERICAN JOURNAL OF PHYSICS, 2017, 85 (11) : 844 - 849
  • [6] Thermoelectric figure of merit of a material with caged structure and rattler atoms
    Behera, SN
    Bose, SM
    Entel, P
    Schick, JT
    PHASE TRANSITIONS, 2004, 77 (1-2) : 225 - 240
  • [7] The rattler effect in thermoelectric clathrates studied by inelastic neutron scattering
    Christensen, Mogens
    Juranyi, Fanni
    Iversen, Bo B.
    PHYSICA B-CONDENSED MATTER, 2006, 385 : 505 - 507
  • [8] SEMICLASSICAL BEHAVIOR AT A QUANTUM AVOIDED CROSSING
    JOYEUX, M
    JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (07): : 2816 - 2824
  • [9] ADIABATIC PASSAGE THROUGH AN AVOIDED CROSSING
    KOUSKOV, V
    SLOOP, DJ
    WEISSMAN, SI
    LIN, TS
    CHEMICAL PHYSICS LETTERS, 1995, 232 (1-2) : 165 - 168
  • [10] Optically induced avoided crossing in graphene
    Buchenau S.
    Grimm-Lebsanft B.
    Biebl F.
    Glier T.
    Westphal L.
    Reichstetter J.
    Manske D.
    Fechner M.
    Cavalleri A.
    Herres-Pawlis S.
    Rübhausen M.
    Physical Review B, 2023, 108 (07)