Enhanced Photoelectrochemical Performance of BiVO4 by a NiMoO4 Modification

被引:0
|
作者
Linmeng Wang
Shan Jia
Xiuquan Gu
Yulong Zhao
Yinghuai Qiang
机构
[1] China University of Mining and Technology,School of Materials Science and Engineering
来源
关键词
NiMoO; BiVO; photoelectrochemical; water splitting;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, porous BiVO4 thin films were deposited on the FTO glass through a spin-coating deposition method and their photoelectrochemical (PEC) properties were investigated. Further, the BiVO4 thin film was modified with a NiMoO4 thin layer for enhancing its PEC activity. It is demonstrated that the applied bias photo-to-current conversion efficiency is increased by 63% after a surface modification, which is ascribed to both the formation of a p–n junction and the suppressed carrier recombination rate by terms of the electrochemical impedance spectroscopy. Finally, a schematic band model is also proposed to clarify the charge carrier transfer mechanism which is responsible for the enhanced PEC performance.
引用
收藏
页码:2501 / 2508
页数:7
相关论文
共 50 条
  • [1] Enhanced Photoelectrochemical Performance of BiVO4 by a NiMoO4 Modification
    Wang, Linmeng
    Jia, Shan
    Gu, Xiuquan
    Zhao, Yulong
    Qiang, Yinghuai
    JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (04) : 2501 - 2508
  • [2] Dual Modification of a BiVO4 Photoanode for Enhanced Photoelectrochemical Performance
    Gao, Lili
    Li, Feng
    Hu, Haiguo
    Long, Xuefeng
    Xu, Na
    Hu, Yiping
    Wei, Shenqi
    Wang, Chenglong
    Ma, Jiantai
    Jin, Jun
    CHEMSUSCHEM, 2018, 11 (15) : 2502 - 2509
  • [3] Enhanced Photoelectrochemical Performance of the BiVO4/Zn:BiVO4 Homojunction for Water Oxidation
    Su, Jinzhan
    Liu, Cong
    Liu, Dongyu
    Li, Mingtao
    Zhou, Jinglan
    CHEMCATCHEM, 2016, 8 (20) : 3279 - 3286
  • [4] BiVO4 photoanodes with enhanced photoelectrochemical performance: Preparation, modification and emerging applications
    Wang, Shuaipeng
    Wan, Kang
    Feng, Jiayue
    Yang, Yilong
    Wang, Songcan
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 217 : 182 - 220
  • [5] Enhanced Photoelectrochemical Water Splitting Using NiMoO4/BiVO4/Sn-Doped WO3 Double Heterojunction Photoanodes
    Htet, Htoo Thiri
    Jung, Yoonsung
    Kim, Yejoon
    Lee, Sanghan
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (39) : 52383 - 52392
  • [6] Enhanced photoelectrochemical performance by doping Mo into BiVO4 lattice
    Linmeng Wang
    Xiuquan Gu
    Yulong Zhao
    Meng Wei
    Yinghuai Qiang
    Yun Zhao
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 19278 - 19286
  • [7] Enhanced photoelectrochemical performance by doping Mo into BiVO4 lattice
    Wang, Linmeng
    Gu, Xiuquan
    Zhao, Yulong
    Wei, Meng
    Qiang, Yinghuai
    Zhao, Yun
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (22) : 19278 - 19286
  • [8] Strategic Modification of BiVO4 for Improving Photoelectrochemical Water Oxidation Performance
    Jeong, Hye Won
    Jeon, Tae Hwa
    Jang, Jum Suk
    Choi, Wonyong
    Park, Hyunwoong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (18): : 9104 - 9112
  • [9] BiVO4 Photoanode with Exposed(040) Facets for Enhanced Photoelectrochemical Performance
    Ligang Xia
    Jinhua Li
    Jing Bai
    Linsen Li
    Shuai Chen
    Baoxue Zhou
    Nano-Micro Letters, 2018, (01) : 95 - 104
  • [10] Enhanced Photoelectrochemical Water Oxidation Performance by Fluorine Incorporation in BiVO4 and Mo:BiVO4 Thin Film Photoanodes
    Rohloff, Martin
    Anke, Bjoern
    Kasian, Olga
    Zhang, Siyuan
    Lerch, Martin
    Scheu, Christina
    Fischer, Anna
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (18) : 16430 - 16442