The non-cylindrical crustal architecture of the Pyrenees

被引:0
|
作者
Sébastien Chevrot
Matthieu Sylvander
Jordi Diaz
Roland Martin
Frédéric Mouthereau
Gianreto Manatschal
Emmanuel Masini
Sylvain Calassou
Frank Grimaud
Hélène Pauchet
Mario Ruiz
机构
[1] GET,
[2] Université de Toulouse,undefined
[3] CNRS,undefined
[4] IRD,undefined
[5] UPS,undefined
[6] IRAP,undefined
[7] Université de Toulouse,undefined
[8] CNRS,undefined
[9] CNES,undefined
[10] UPS,undefined
[11] Institute of Earth Sciences Jaume Almeria,undefined
[12] ICTJA-CSIC,undefined
[13] IPGS/EOST,undefined
[14] Université de Strasbourg,undefined
[15] R&D,undefined
[16] CSTJF - Total S.A.,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We exploit the data from five seismic transects deployed across the Pyrenees to characterize the deep architecture of this collisional orogen. We map the main seismic interfaces beneath each transect by depth migration of P-to-S converted phases. The migrated sections, combined with the results of recent tomographic studies and with maps of Bouguer and isostatic anomalies, provide a coherent crustal-scale picture of the belt. In the Western Pyrenees, beneath the North Pyrenean Zone, a continuous band of high density/velocity material is found at a very shallow level (~10 km) beneath the Mauleon basin and near Saint-Gaudens. In the Western Pyrenees, we also find evidence for northward continental subduction of Iberian crust, down to 50–70 km depth. In the Eastern Pyrenees, these main structural features are not observed. The boundary between these two domains is near longitude 1.3 °E, where geological field studies document a major change in the structure of the Cretaceous rift system, and possibly a shift of its polarity, suggesting that the deep orogenic architecture of the Pyrenees is largely controlled by structural inheritance.
引用
收藏
相关论文
共 50 条
  • [1] The non-cylindrical crustal architecture of the Pyrenees
    Chevrot, Sebastien
    Sylvander, Matthieu
    Diaz, Jordi
    Martin, Roland
    Mouthereau, Frederic
    Manatschal, Gianreto
    Masini, Emmanuel
    Calassou, Sylvain
    Grimaud, Frank
    Pauchet, Helene
    Ruiz, Mario
    SCIENTIFIC REPORTS, 2018, 8
  • [2] Shape factor for non-cylindrical nanowires
    Qi, W. H.
    Huang, B. Y.
    Wang, M. P.
    Yin, Z. M.
    Li, J.
    PHYSICA B-CONDENSED MATTER, 2008, 403 (13-16) : 2386 - 2389
  • [3] Eulerian derivative for non-cylindrical functionals
    Dziri, R
    Zolésio, JP
    SHAPE OPTIMIZATION AND OPTIMAL DESIGN, 2001, 216 : 87 - 107
  • [4] NON-CIRCULAR AND NON-CYLINDRICAL STREAMVANES
    Gillespie, John
    Lowe, K. Todd
    PROCEEDINGS OF THE ASME TURBO EXPO 2020: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 1, 2020,
  • [5] Adaptive Control of a Non-Cylindrical Tank
    Nippert, C. R.
    Coburn, Rebecca
    Shea, Brendon
    Roth, Michael
    Harrell, Clinton
    Owusu, Edward
    INTERNATIONAL JOURNAL OF ONLINE ENGINEERING, 2013, 9 (02) : 50 - 52
  • [6] NON-CYLINDRICAL MAGNETIC-BUBBLES
    NEDLIN, GM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (03): : 462 - 462
  • [7] Capillary surfaces in non-cylindrical domains
    Schindlmayr, G
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (03): : 747 - 762
  • [8] THE GEOMETRICAL CLASSIFICATION OF NON-CYLINDRICAL FOLDS
    WILLIAMS, GD
    CHAPMAN, TJ
    JOURNAL OF STRUCTURAL GEOLOGY, 1979, 1 (03) : 181 - 185
  • [9] Comminution in a non-cylindrical roll crusher
    Velletri, P
    Weedon, DM
    MINERALS ENGINEERING, 2001, 14 (11) : 1459 - 1468
  • [10] The hinge lines of non-cylindrical folds
    Lisle, R. J.
    Toimil, N.
    Aller, J.
    Bobillo-Ares, N.
    Bastida, F.
    JOURNAL OF STRUCTURAL GEOLOGY, 2010, 32 (02) : 166 - 171