Geodesic rigidity of Levi-Civita connections admitting essential projective vector fields

被引:0
|
作者
Tianyu Ma
机构
[1] Friedrich Schiller University Jena,Faculty of Mathematics and Informatics
来源
Geometriae Dedicata | 2020年 / 205卷
关键词
Geodesic rigidity; Essential projective vector field; Metrizable projective structure; Local dynamics; 53A20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, it is proved that a connected 3-dimensional Riemannian manifold or a closed connected semi-Riemannian manifold Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^n$$\end{document} (n>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>1$$\end{document}) admitting a projective vector field with a non-linearizable singularity is projectively flat.
引用
收藏
页码:147 / 166
页数:19
相关论文
共 41 条
  • [1] Geodesic rigidity of Levi-Civita connections admitting essential projective vector fields
    Ma, Tianyu
    [J]. GEOMETRIAE DEDICATA, 2020, 205 (01) : 147 - 166
  • [2] Levi-Civita connections and vector fields for noncommutative differential calculi
    Bhowmick, Jyotishman
    Goswami, Debashish
    Landi, Giovanni
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (08)
  • [3] 3-dimensional Levi-Civita metrics with projective vector fields
    Manno, Gianni
    Vollmer, Andreas
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 163 : 473 - 517
  • [4] On noncommutative Levi-Civita connections
    Peterka, Mira A.
    Sheu, Albert Jeu-Liang
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (05)
  • [5] Levi-Civita Connections on Quantum Spheres
    Arnlind, Joakim
    Ilwale, Kwalombota
    Landi, Giovanni
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2022, 25 (03)
  • [7] Calculus and numerics on Levi-Civita fields
    Berz, M
    [J]. COMPUTATIONAL DIFFERENTIATION: TECHNIQUES, APPLICATIONS, AND TOOLS, 1996, : 19 - 35
  • [8] Null-Projectability of Levi-Civita Connections
    Derdzinski, Andrzej
    Masood, Kirollos
    [J]. RESULTS IN MATHEMATICS, 2023, 78 (04)
  • [9] Cauchy theory on Levi-Civita fields
    Berz, M
    [J]. ULTRAMETRIC FUNCTIONAL ANALYSIS, 2003, 319 : 39 - 52
  • [10] Levi-Civita connections for a class of spectral triples
    Jyotishman Bhowmick
    Debashish Goswami
    Sugato Mukhopadhyay
    [J]. Letters in Mathematical Physics, 2020, 110 : 835 - 884