Flexoelectricity enhanced water splitting and hydrogen evolution reaction on grain boundaries of monolayer transition metal dichalcogenides

被引:0
|
作者
Mingjie Pu
Dong Wang
Zhuhua Zhang
Yufeng Guo
Wanlin Guo
机构
[1] Nanjing University of Aeronautics and Astronautics,State Key Laboratory of Mechanics and Control of Mechanical Structures and MOE Key Laboratory for Intelligent Nano Materials and Devices, College of Aerospace Engineering
来源
Nano Research | 2022年 / 15卷
关键词
flexoelectricity; transition metal dichalcogenides; grain boundaries; water splitting; hydrogen evolution reaction;
D O I
暂无
中图分类号
学科分类号
摘要
Our extensive first-principles calculations reveal that the chemical activities of monolayer transition metal dichalcogenides (TMDs) MX2 (M = Mo or W, and X = Te, Se, or S) for water splitting and hydrogen evolution are modified and promoted on their grain boundaries (GBs) when in-plane tensile loadings are applied. Compared with monolayer TMDs without GBs, the flexoelectricity induced by nonuniform deformation and strain gradient significantly enhances the charge polarizations of X and M atoms at the GB sites of monolayer TMDs, which facilitates the dissociation of water molecules on the GB sites and reduces the reaction barrier of hydrogen evolution reaction. The energy barriers of splitting water molecules and hydrogen adsorption free energies on the GB sites decrease with increasing the flexoelectric effect. These results highlight an attractive way of utilizing the flexoelectric effect of GB-containing TMDs to improve their surface catalytic capability for hydrogen generation.
引用
收藏
页码:978 / 984
页数:6
相关论文
共 50 条
  • [1] Flexoelectricity enhanced water splitting and hydrogen evolution reaction on grain boundaries of monolayer transition metal dichalcogenides
    Pu, Mingjie
    Wang, Dong
    Zhang, Zhuhua
    Guo, Yufeng
    Guo, Wanlin
    [J]. NANO RESEARCH, 2022, 15 (02) : 978 - 984
  • [2] Flexoelectricity in Monolayer Transition Metal Dichalcogenides
    Shi, Wenhao
    Guo, Yufeng
    Zhang, Zhuhua
    Guo, Wanlin
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (23): : 6841 - 6846
  • [3] Prediction of Enhanced Catalytic Activity for Hydrogen Evolution Reaction in Janus Transition Metal Dichalcogenides
    Er, Dequan
    Ye, Han
    Frey, Nathan C.
    Kumar, Hemant
    Lou, Jun
    Shenoy, Vivek B.
    [J]. NANO LETTERS, 2018, 18 (06) : 3943 - 3949
  • [4] Unsaturated Single Atoms on Monolayer Transition Metal Dichalcogenides for Ultrafast Hydrogen Evolution
    Luo, Yuting
    Zhang, Shuqing
    Pan, Haiyang
    Xiao, Shujie
    Guo, Zenglong
    Tang, Lei
    Khan, Usman
    Ding, Bao-Fu
    Li, Meng
    Cai, Zhengyan
    Zhao, Yue
    Lv, Wei
    Feng, Qingliang
    Zou, Xiaolong
    Lin, Junhao
    Cheng, Hui-Ming
    Liu, Bilu
    [J]. ACS NANO, 2020, 14 (01) : 767 - 776
  • [5] The mechanism of hydrogen adsorption on transition metal dichalcogenides as hydrogen evolution reaction catalyst
    Wang, Jinsong
    Liu, Jia
    Zhang, Bao
    Ji, Xiao
    Xu, Kui
    Chen, Chi
    Miao, Ling
    Jiang, Jianjun
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (15) : 10125 - 10132
  • [6] Research progress of transition-metal dichalcogenides for the hydrogen evolution reaction
    Deng, Qibo
    Li, Zhiwei
    Huang, Rui
    Li, Pengfei
    Gomaa, Hassanien
    Wu, Shuai
    An, Cuihua
    Hu, Ning
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (45) : 24434 - 24453
  • [7] Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction
    Yang, Jieun
    Shin, Hyeon Suk
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (17) : 5979 - 5985
  • [8] Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis*
    Wang, Zhe
    Zhu, Wenguang
    [J]. CHINESE PHYSICS B, 2021, 30 (11)
  • [9] Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis
    王喆
    朱文光
    [J]. Chinese Physics B, 2021, 30 (11) : 401 - 407
  • [10] Recent advances in metallic transition metal dichalcogenides as electrocatalysts for hydrogen evolution reaction
    Sim, Yeoseon
    Chae, Yujin
    Kwon, Soon -Yong
    [J]. ISCIENCE, 2022, 25 (10)