Bounds for Relative Projection Constants in L1(-1,1)

被引:0
|
作者
E. Görlich
A. P. Rohs
机构
[1] Lehrstuhl A für Mathematik Technische Hochschule RWTH Aachen 52056 Aachen Germany,
[2] Lehrstuhl A für Mathematik Technische Hochschule RWTH Aachen 52056 Aachen Germany,undefined
来源
Constructive Approximation | 1998年 / 14卷
关键词
Key words. Relative projection constant; Minimal projection; Berman—Marcinkiewicz identity; Jacobi polynomials; Müntz polynomials; Complemented subspace; Relatively disjoint family of functions. AMS Classification. Primary 41A10; Secondary 41A35, 46B99.;
D O I
暂无
中图分类号
学科分类号
摘要
For n -dimensional subspaces En, Fn of L1(-1,1) with En spanned by Chebyshev polynomials of the second kind and Fn the set of Müntz polynomials \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\sum_{j=1}^n a_j x^{m^j}$ \end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $m \in {\bf N}$ \end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $m \ge 8$ \end{document} , it is shown that the relative projection constants satisfy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\lambda$ \end{document}(En, L1(-1,1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\ge$ \end{document}C log n and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\lambda$ \end{document}(Fn, L1(-1,1)) = O(1) , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n \to \infty$ \end{document} . The spaces L1w(α,β) , where wα,β is the weight function of the Jacobi polynomials and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(\alpha,\beta) \in \{ (-\frac{1}{2},-\frac{1}{2}),(-\frac{1}{2},0),(0,-\frac{1}{2}) \}$ \end{document} , are also studied. The Jacobi partial sum projections, which are used in connection with En , are not minimal.
引用
收藏
页码:589 / 597
页数:8
相关论文
共 50 条
  • [1] Bounds for relative projection constants in L1(-1, 1)
    Gorlich, E
    Rohs, AP
    CONSTRUCTIVE APPROXIMATION, 1998, 14 (04) : 589 - 597
  • [2] Symmetric subspaces of l1 with large projection constants
    Chalmers, BL
    Lewicki, G
    STUDIA MATHEMATICA, 1999, 134 (02) : 119 - 133
  • [3] A LOWER BOUND FOR PROJECTION OPERATORS ON L1 (-1, 1)
    GORLICH, E
    MARKETT, C
    ARKIV FOR MATEMATIK, 1986, 24 (01): : 81 - 92
  • [4] L1 bounds in normal approximation
    Goldstein, Larry
    ANNALS OF PROBABILITY, 2007, 35 (05): : 1888 - 1930
  • [5] LOWER BOUNDS FOR L1 DISCREPANCY
    Vagharshakyan, Armen
    MATHEMATIKA, 2013, 59 (02) : 365 - 379
  • [6] BOUNDS FOR PROJECTION CONSTANTS AND 1-SUMMING NORMS
    KONIG, H
    TOMCZAKJAEGERMANN, N
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 320 (02) : 799 - 823
  • [7] Fourier sums with exponential weights on (-1,1): L1 and L∞ cases
    Mastroianni, G.
    Notarangelo, I.
    JOURNAL OF APPROXIMATION THEORY, 2011, 163 (11) : 1675 - 1691
  • [8] Improved lower bounds for embeddings into L1
    Krauthgamer, Robert
    Rabani, Yuval
    PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, : 1010 - 1017
  • [9] IMPROVED LOWER BOUNDS FOR EMBEDDINGS INTO L1
    Krauthgamer, Robert
    Rabani, Yuval
    SIAM JOURNAL ON COMPUTING, 2009, 38 (06) : 2487 - 2498
  • [10] Continuous Projection for Fast L1 Reconstruction
    Preiner, Reinhold
    Mattausch, Oliver
    Arikan, Murat
    Pajarola, Renato
    Wimmer, Michael
    ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (04):