Large time behavior of solutions to the critical dissipative nonlinear Schrödinger equation with large data

被引:0
|
作者
Takuya Sato
机构
[1] Tohoku University,Mathematical Institute
来源
关键词
Nonlinear Schrödinger equation; Analyticity; Decay estimate; Critical dissipative nonlinearity; 35Q55; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Cauchy problem for the dissipative nonlinear Schrödinger equation with a critical cubic nonlinearity in one space dimension. We show the global uniform bound of dissipative solutions in the Gevrey class and its L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-decay order without any restriction of the size of smooth initial data.
引用
收藏
相关论文
共 50 条