For every odd integer N we give explicit construction of a polynomial curve \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal C(t)=(x(t),y(t))}$$\end{document} , where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm deg}\, x=3, {\rm deg}\, y=N + 1 + 2[\frac{N}{4}]}$$\end{document} that has exactly N crossing points \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal C(t_i)=\mathcal C(s_i)}$$\end{document} whose parameters satisfy s1 < ⋯ < sN < t1 < ⋯ < tN. Our proof makes use of the theory of Stieltjes series and Padé approximants. This allows us an explicit polynomial parametrization of the torus knot K2,2n+1 with degree (3, 3n + 1, 3n + 2).