Oscillator Representations of Quantum Affine Orthosymplectic Superalgebras

被引:0
|
作者
Kwon, Jae-Hoon [1 ,2 ]
Lee, Sin-Myung [3 ]
Okado, Masato [4 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, RIM, Seoul 08826, South Korea
[3] Korea Inst Adv Study, Sch Math, Seoul 02445, South Korea
[4] Osaka Metropolitan Univ, Osaka Cent Adv Math Inst, Dept Math, 3-3-138 Sugimoto,Sumiyoshi Ku, Osaka 5588585, Japan
关键词
LIE-SUPERALGEBRAS; R-MATRICES; ALGEBRAS;
D O I
10.1007/s00220-024-04961-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a category of q-oscillator representations over the quantum affine superalgebras of type D and construct a new family of its irreducible representations. Motivated by the theory of super duality, we show that these irreducible representations naturally interpolate the irreducible q-oscillator representations of type Xn(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n<^>{(1)}$$\end{document} and the finite-dimensional irreducible representations of type Yn(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_n<^>{(1)}$$\end{document} for (X,Y)=(C,D),(D,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,Y)=(C,D),(D,C)$$\end{document} under exact monoidal functors. This can be viewed as a quantum (untwisted) affine analogue of the correspondence between irreducible oscillator and irreducible finite-dimensional representations of classical Lie algebras arising from Howe's reductive dual pairs (g,G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathfrak {g},G)$$\end{document}, where g=sp2n,so2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {g}=\mathfrak {sp}_{2n}, \mathfrak {so}_{2n}$$\end{document} and G=Ol,Sp2l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=O_\ell , Sp_{2\ell }$$\end{document}.
引用
收藏
页数:53
相关论文
共 50 条