On the Cauchy Problem for Integro-differential Operators in Hölder Classes and the Uniqueness of the Martingale Problem

被引:0
|
作者
R. Mikulevicius
H. Pragarauskas
机构
[1] University of Southern California,Institute of Mathematics and Informatics
[2] Vilnius University,undefined
来源
Potential Analysis | 2014年 / 40卷
关键词
Non-local parabolic equations; Hölder-Zygmund spaces; Lévy processes; Martingale problem; 45K05; 60J75; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
The existence and uniqueness in Hölder spaces of classical solutions of the Cauchy problem to parabolic integro-differential equation of the order α ∈ (0, 2) is investigated. The principal part of the operator has kernel m(t, x, y)/|y|d + α with a bounded nondegenerate m, Hölder in x and measurable in y. The result is applied to prove the uniqueness of the corresponding martingale problem.
引用
收藏
页码:539 / 563
页数:24
相关论文
共 50 条