Special functions associated with a certain fourth-order differential equation

被引:0
|
作者
Joachim Hilgert
Toshiyuki Kobayashi
Gen Mano
Jan Möllers
机构
[1] Universität Paderborn,Institut für Mathematik
[2] The University of Tokyo,Graduate School of Mathematical Sciences, IPMU
[3] Max-Planck-Institut für Mathematik,Graduate School of Mathematical Sciences
[4] The University of Tokyo,undefined
来源
The Ramanujan Journal | 2011年 / 26卷
关键词
Fourth-order differential equations; Generating functions; Bessel functions; Orthogonal polynomials; Laguerre polynomials; Recurrence relations; Meijer’s ; -function; Minimal representation; Indefinite orthogonal group; 33C45; 22E46; 34A05; 42C15;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a theory of “special functions” associated with a certain fourth-order differential operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{D}_{\mu,\nu}$\end{document} on ℝ depending on two parameters μ,ν. For integers μ,ν≥−1 with μ+ν∈2ℕ0, this operator extends to a self-adjoint operator on L2(ℝ+,xμ+ν+1 dx) with discrete spectrum. We find a closed formula for the generating functions of the eigenfunctions, from which we derive basic properties of the eigenfunctions such as orthogonality, completeness, L2-norms, integral representations, and various recurrence relations.
引用
收藏
页码:1 / 34
页数:33
相关论文
共 50 条