An Identity for Expectations and Characteristic Function of Matrix Variate Skew-normal Distribution with Applications to Associated Stochastic Orderings

被引:0
|
作者
Tong Pu
Narayanaswamy Balakrishnan
Chuancun Yin
机构
[1] Qufu Normal University,School of Statistics
[2] McMaster University,Department of Mathematics and Statistics
关键词
Characteristic function; Integral order; Matrix variate skew-normal distributions; Stochastic comparisons; 60E10; 60E15;
D O I
暂无
中图分类号
学科分类号
摘要
We establish an identity for EfY-EfX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ef\left( \varvec{Y}\right) - Ef\left( \varvec{X}\right) $$\end{document}, when X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{X}$$\end{document} and Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Y}$$\end{document} both have matrix variate skew-normal distributions and the function f satisfies some weak conditions. The characteristic function of matrix variate skew normal distribution is then derived. We then make use of it to derive some necessary and sufficient conditions for the comparison of matrix variate skew-normal distributions under six different orders, such as usual stochastic order, convex order, increasing convex order, upper orthant order, directionally convex order and supermodular order.
引用
收藏
页码:629 / 647
页数:18
相关论文
共 14 条