Photon-enhanced thermionic emission from heterostructures with low interface recombination

被引:0
|
作者
J.W. Schwede
T. Sarmiento
V.K. Narasimhan
S.J. Rosenthal
D.C. Riley
F. Schmitt
I. Bargatin
K. Sahasrabuddhe
R.T. Howe
J.S. Harris
N.A. Melosh
Z.-X. Shen
机构
[1] Geballe Laboratory for Advanced Materials,Department of Physics and Applied Physics
[2] Stanford University,Department of Electrical Engineering
[3] Stanford Institute for Materials and Energy Sciences,Department of Materials Science and Engineering
[4] SLAC National Accelerator Laboratory,Department of Mechanical Engineering and Applied Mechanics
[5] Stanford University,undefined
[6] Stanford University,undefined
[7] Stanford University,undefined
[8] University of Pennsylvania,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Photon-enhanced thermionic emission is a method of solar-energy conversion that promises to combine photon and thermal processes into a single mechanism, overcoming fundamental limits on the efficiency of photovoltaic cells. Photon-enhanced thermionic emission relies on vacuum emission of photoexcited electrons that are in thermal equilibrium with a semiconductor lattice, avoiding challenging non-equilibrium requirements and exotic material properties. However, although previous work demonstrated the photon-enhanced thermionic emission effect, efficiency has until now remained very low. Here we describe electron-emission measurements on a GaAs/AlGaAs heterostructure that introduces an internal interface, decoupling the basic physics of photon-enhanced thermionic emission from the vacuum emission process. Quantum efficiencies are dramatically higher than in previous experiments because of low interface recombination and are projected to increase another order of magnitude with more stable, low work-function coatings. The results highlight the effectiveness of the photon-enhanced thermionic emission process and demonstrate that efficient photon-enhanced thermionic emission is achievable, a key step towards realistic photon-enhanced thermionic emission based energy conversion.
引用
收藏
相关论文
共 50 条
  • [1] Photon-enhanced thermionic emission from heterostructures with low interface recombination
    Schwede, J. W.
    Sarmiento, T.
    Narasimhan, V. K.
    Rosenthal, S. J.
    Riley, D. C.
    Schmitt, F.
    Bargatin, I.
    Sahasrabuddhe, K.
    Howe, R. T.
    Harris, J. S.
    Melosh, N. A.
    Shen, Z. -X.
    NATURE COMMUNICATIONS, 2013, 4
  • [2] Low Electron Affinity Silicon/Nanocrystalline Diamond Heterostructures for Photon-Enhanced Thermionic Emission
    Salerno, Raffaella
    Valentini, Veronica
    Bolli, Eleonora
    Mastellone, Matteo
    Serpente, Valerio
    Mezzi, Alessio
    Tortora, Luca
    Colantoni, Elisabetta
    Bellucci, Alessandro
    Polini, Riccardo
    Trucchi, Daniele M.
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (03) : 868 - 873
  • [3] Thermionic and photon-enhanced emission energy conversion
    Melosh, Nick
    Riley, Daniel
    Sahasrabuddhe, Kunal
    Shen, Z. X.
    Schwede, Jared
    Howe, Roger
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [4] Solar energy conversion with photon-enhanced thermionic emission
    Kribus, Abraham
    Segev, Gideon
    JOURNAL OF OPTICS, 2016, 18 (07)
  • [5] Thermodynamics of photon-enhanced thermionic emission solar cells
    Reck, Kasper
    Hansen, Ole
    APPLIED PHYSICS LETTERS, 2014, 104 (02)
  • [6] Photon-enhanced thermionic emission for solar concentrator systems
    Schwede, Jared W.
    Bargatin, Igor
    Riley, Daniel C.
    Hardin, Brian E.
    Rosenthal, Samuel J.
    Sun, Yun
    Schmitt, Felix
    Pianetta, Piero
    Howe, Roger T.
    Shen, Zhi-Xun
    Melosh, Nicholas A.
    NATURE MATERIALS, 2010, 9 (09) : 762 - 767
  • [7] Photon-enhanced thermionic emission for solar concentrator systems
    不详
    CHEMSUSCHEM, 2010, 3 (10) : 1103 - 1103
  • [8] GaAs film for photon-enhanced thermionic emission solar harvesters
    Tang, Weidong
    Yang, Wenzheng
    Yang, Yang
    Sun, Chuandong
    Cai, Zhipeng
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2014, 25 : 143 - 147
  • [9] Preparation of graphene aerogel and application in photon-enhanced thermionic emission
    Guo, Shiwei
    Zhao, Hongli
    Xu, Yanpeng
    Pei, Xueqing
    Li, Shuang
    Fu, Yuechun
    He, Huan
    Shen, Xiaoming
    RSC ADVANCES, 2022, 12 (18) : 11113 - 11118
  • [10] Effects of nanoscale vacuum gap on photon-enhanced thermionic emission devices
    Wang, Yuan
    Liao, Tianjun
    Zhang, Yanchao
    Chen, Xiaohang
    Su, Shanhe
    Chen, Jincan
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (04)