Large-Eddy Simulation of the Gust Index in an Urban Area Using the Lattice Boltzmann Method

被引:0
|
作者
Nurul Huda Ahmad
Atsushi Inagaki
Manabu Kanda
Naoyuki Onodera
Takayuki Aoki
机构
[1] Tokyo Institute of Technology,Department of International Development Engineering
[2] Universiti Teknologi Malaysia,Engineering Department (Mechanical Engineering), UTM Razak School of Engineering and Advanced Technology
[3] National Maritime Research Institute,Fluids Engineering and Ship Performance Evaluation Department
[4] Tokyo Institute of Technology,Global Scientific Informational and Computing Center
来源
Boundary-Layer Meteorology | 2017年 / 163卷
关键词
Gust index; Large-eddy simulation; Lattice Boltzmann method; Mean wind-speed ratio; Urban area;
D O I
暂无
中图分类号
学科分类号
摘要
We used numerical simulations to investigate the general relationship between urban morphology and the intensity of wind gusts in built-up areas at the pedestrian level. The simulated urban boundary layer developed over a 19.2 km (length) ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 4.8 km (width) ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 1.0 km (height) simulation domain, with 2-m resolution in all directions, to explicitly resolve the detailed shapes of buildings and the flow at the pedestrian level. This complex computation was accomplished using the lattice Boltzmann method and by implementing a large-eddy simulation model. To generalize the results, a new parameter that expresses the intensity of gusts (the gust index, U~max)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{U}}_{ max})$$\end{document} was defined as the local maximum wind speed divided by the freestream velocity. In addition, this parameter was decomposed into the mean wind-speed ratio, U~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{U}} $$\end{document} and turbulent gust ratio, U~′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{U}}^{{\prime }}$$\end{document} to evaluate the qualities of gusts. These parameters were useful for quantitatively comparing the gust intensities within urban canopies at different locations or even among different experiments. In addition, the entire horizontal domain was subdivided into homogeneous square patches, in which both the simulated gust parameters and the morphological characteristics of building geometries were averaged. This procedure masked the detailed structure of individual buildings but retained the bulk characteristics of the urban morphology. At the pedestrian level, the gust index decreased with increasing building cover. Compared to U~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{U}} $$\end{document}, the quantity U~′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{U}}^{{\prime }}$$\end{document} notably contributed to the index throughout the range of plan area index (λp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda _p)$$\end{document} values. The dependences of all normalized wind-speed ratios transiently changed at λp=0.28\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _p =~0.28$$\end{document}. In cases where λp<0.28,U~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _p < 0.28, {\tilde{U}} $$\end{document} decreased with increasing λp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _p $$\end{document}, although U~′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{U}}^{{\prime }}$$\end{document} was almost constant. In cases where λp>0.28,U~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _p > 0.28, {\tilde{U}}$$\end{document} was almost constant and U~′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{U}}^{{\prime }}$$\end{document} decreased with increasing λp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _p $$\end{document}. This was explained by the change in flow regimes within the building canyon. At a higher elevation above the canopy layer, λp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _p $$\end{document} becomes less relevant to normalized wind-speed ratios, and instead the aerodynamic roughness length became important.
引用
收藏
页码:447 / 467
页数:20
相关论文
共 50 条
  • [1] Large-Eddy Simulation of the Gust Index in an Urban Area Using the Lattice Boltzmann Method
    Ahmad, Nurul Huda
    Inagaki, Atsushi
    Kanda, Manabu
    Onodera, Naoyuki
    Aoki, Takayuki
    [J]. BOUNDARY-LAYER METEOROLOGY, 2017, 163 (03) : 447 - 467
  • [2] Wall model for large-eddy simulation based on the lattice Boltzmann method
    Malaspinas, O.
    Sagaut, P.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 275 : 25 - 40
  • [3] Large-eddy simulation of subsonic turbulent jets using the compressible lattice Boltzmann method
    Noah, Khalid
    Lien, Fue-Sang
    Yee, Eugene
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (04) : 927 - 952
  • [4] Lattice Boltzmann method and large-eddy simulation for turbulent impinging jet cooling
    Yang, Yue-Tzu
    Chang, Shing-Cheng
    Chiou, Chu-Shiang
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 61 : 543 - 553
  • [5] Large eddy simulation of subchannels using the lattice Boltzmann method
    Mayer, Gusztav
    Pales, Jozsef
    Hazi, Gabor
    [J]. ANNALS OF NUCLEAR ENERGY, 2007, 34 (1-2) : 140 - 149
  • [6] Inertial consistent subgrid model for large-eddy simulation based on the lattice Boltzmann method
    Dong, Yu-Hong
    Sagaut, Pierre
    Marie, Simon
    [J]. PHYSICS OF FLUIDS, 2008, 20 (03)
  • [7] Lattice Boltzmann method-based large-eddy simulation of indoor isothermal airflow
    Han, Mengtao
    Ooka, Ryozo
    Kikumoto, Hideki
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 130 : 700 - 709
  • [8] Large-Eddy Simulation of Self-Sustained Flaw Instabilities in Cavities Using the Lattice-Boltzmann Method
    Premnath, Kannan N.
    Pattison, Martin J.
    Banerjee, Sanjoy
    [J]. AIAA JOURNAL, 2009, 47 (01) : 229 - 243
  • [9] Large-eddy simulation of turbulent natural convection in a cylindrical cavity using an off-lattice Boltzmann method
    Polasanapalli, Sai Ravi Gupta
    Anupindi, Kameswararao
    [J]. PHYSICS OF FLUIDS, 2022, 34 (03)
  • [10] NUMERICAL ANALYSIS OF TURBULENT NATURAL CONVECTION IN SQUARE CAVITY USING LARGE-EDDY SIMULATION IN LATTICE BOLTZMANN METHOD
    Sajjadi, H.
    Gorji, M.
    Hosseinizadeh, S. F.
    Kefayati, G. R.
    Ganji, D. D.
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF MECHANICAL ENGINEERING, 2011, 35 (M2) : 133 - 142