Analyticity of solutions to thermoviscoelastic diffusion mixtures problem in higher dimension

被引:0
|
作者
Moncef Aouadi
Francesca Passarella
Vincenzo Tibullo
机构
[1] Université de Carthage,Ecole Nationale d’Ingénieurs de Bizerte
[2] Università di Salerno,Dipartimento di Matematica
来源
Acta Mechanica | 2020年 / 231卷
关键词
35A01; 37B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the linear theory of binary mixtures for thermoviscoelastic diffusion materials derived by Aouadi et al. (J Therm Stress 41:1414–1431, 2018). We establish the necessary and sufficient conditions to get a dissipation inequality for isotropic centrosymmetric materials. With the help of the semigroup theory of linear operators, we prove the well posedness of the higher-dimensional problem. Then, we show that the associated C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0$$\end{document}-semigroup is analytic. Exponential stability and impossibility of localization of the solutions in time are immediate consequences.
引用
收藏
页码:1125 / 1140
页数:15
相关论文
共 50 条