On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line

被引:0
|
作者
Adhemar Bultheel
Ruymán Cruz-Barroso
Marc Van Barel
机构
[1] K.U.Leuven,Department of Computer Science
来源
Calcolo | 2010年 / 47卷
关键词
Gauss-type quadrature formulas; Quasi-orthogonal polynomials; Jacobi matrices; 41A55; 42C05; 65D30; 65F15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, quadrature formulas on the real line with the highest degree of accuracy, with positive weights, and with one or two prescribed nodes anywhere on the interval of integration are characterized. As an application, the same kind of rules but with one or both (finite) endpoints being fixed nodes and one or two more prescribed nodes inside the interval of integration are derived. An efficient computation of such quadrature formulas is analyzed by considering certain modified Jacobi matrices. Some numerical experiments are finally presented.
引用
收藏
页码:21 / 48
页数:27
相关论文
共 50 条
  • [1] On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line
    Bultheel, Adhemar
    Cruz-Barroso, Ruyman
    Van Barel, Marc
    CALCOLO, 2010, 47 (01) : 21 - 48
  • [2] Erratum to: On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line
    Adhemar Bultheel
    Ruymán Cruz-Barroso
    Marc Van Barel
    Calcolo, 2013, 50 : 163 - 164
  • [3] On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line (vol 47, pg 21, 2010)
    Bultheel, Adhemar
    Cruz-Barroso, Ruyman
    Van Barel, Marc
    CALCOLO, 2013, 50 (02) : 163 - 164
  • [4] Computation of Gauss-type quadrature formulas
    Laurie, DP
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 127 (1-2) : 201 - 217
  • [5] On the convergence of certain Gauss-type quadrature formulas for unbounded intervals
    Bultheel, A
    Díaz-Mendoza, C
    González-Vera, P
    Orive, R
    MATHEMATICS OF COMPUTATION, 2000, 69 (230) : 721 - 747
  • [6] COMPARISON OF NEWTON-COTES-TYPE AND GAUSS-TYPE QUADRATURE-FORMULAS
    FORSTER, KJ
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (05): : T279 - T280
  • [7] ON GAUSS-TYPE QUADRATURE RULES
    Bokhari, M. A.
    Qadir, Asghar
    Al-Attas, H.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (10) : 1120 - 1134
  • [8] Orthogonal Laurent polynomials and quadrature formulas for unbounded intervals:: I.: Gauss-type formulas
    Bultheel, A
    Díaz-Mendoza, C
    González-Vera, P
    Orive, R
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2003, 33 (02) : 585 - 608
  • [9] COMPUTATION OF GAUSS-TYPE QUADRATURE RULES∗
    Borges, Carlos F.
    Reichel, Lothar
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2024, 61 : 121 - 136
  • [10] A connection between Szego-Lobatto and quasi Gauss-type quadrature formulas
    Cruz-Barroso, Ruyman
    Diaz Mendoza, Carlos
    Perdomo-Pio, Francisco
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 284 : 133 - 143