Quasilinear Schrödinger equations with superlinear terms describing the Heisenberg ferromagnetic spin chain

被引:0
|
作者
Yongkuan Cheng
Yaotian Shen
机构
[1] South China University of Technology,School of Mathematics
来源
关键词
Schrödinger equations; estimate; Heisenberg ferromagnet; 35B33; 35J20; 35J60; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a model problem arising from a classical planar Heisenberg ferromagnetic spin chain: −Δu+V(x)u−u1−u2Δ1−u2=c|u|p−2u,x∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ -\Delta u+V(x)u-\frac{u}{\sqrt{1-u^{2}}}\Delta \sqrt{1-u^{2}}=c \vert u \vert ^{p-2}u,\quad x\in \mathbb{R}^{N}, $$\end{document} where 2<p<2∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2< p<2^{*}$\end{document}, c>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c>0$\end{document} and N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N\geq 3$\end{document}. By the cutoff technique, the change of variables and the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty}$\end{document} estimate, we prove that there exists c0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c_{0}>0$\end{document}, such that for any c>c0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c>c_{0}$\end{document} this problem admits a positive solution. Here, in contrast to the Morse iteration method, we construct the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty}$\end{document} estimate of the solution. In particular, we give the specific expression of c0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c_{0}$\end{document}.
引用
收藏
相关论文
共 50 条