Uniform stability for a semilinear non-homogeneous Timoshenko system with localized nonlinear damping

被引:0
|
作者
M. M. Cavalcanti
W. J. Corrêa
V. N. Domingos Cavalcanti
M. A. Jorge Silva
J. P. Zanchetta
机构
[1] State University of Maringá,Department of Mathematics
[2] Federal Technological University of Paraná,Departamento de Mathematics
[3] State University of Maringá,Department of Mathematics
[4] State University of Londrina,Department of Mathematics
[5] State University of Maringá,undefined
关键词
Timoshenko system; General decay rates; Localized damping; Semilinear problems; 35B35; 35B40; 35L53; 74K10; 93B07; 93D20;
D O I
暂无
中图分类号
学科分类号
摘要
This work is concerned with a semilinear non-homogeneous Timoshenko system under the effect of two nonlinear localized frictional damping mechanisms. The main goal is to prove its uniform stability by imposing minimal amount of support for the damping and, as expected, without assuming any relation on the non-constant coefficients. This fact generalizes substantially the previous papers by Cavalcanti et al. (Z Angew Math Phys 65(6):1189–1206, 2014) and Santos et al. (Differ Integral Equ 27(1–2):1–26, 2014) at the levels of problem and method. It is worth mentioning that the methodologies of these latter cannot be applied to the semilinear case herein, namely when one considers the problem with nonlinear source terms. Thus, differently of Cavalcanti et al. (Z Angew Math Phys 65(6):1189–1206, 2014), Santos et al. (Differ Integral Equ 27(1–2):1–26, 2014), the proof of our main stability result relies on refined arguments of microlocal analysis due to Burq and Gérard (Contrôle Optimal des équations aux dérivées partielles, http://www.math.u-psud.fr/~burq/articles/coursX.pdf, 2001). As far as we know, it seems to be the first time that such a methodology has been employed to 1-D systems of Timoshenko type with nonlinear foundations.
引用
收藏
相关论文
共 50 条
  • [1] Uniform stability for a semilinear non-homogeneous Timoshenko system with localized nonlinear damping
    Cavalcanti, M. M.
    Correa, W. J.
    Cavalcanti, V. N. Domingos
    Silva, M. A. Jorge
    Zanchetta, J. P.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (06):
  • [2] Uniform Stability for a Semilinear Laminated Timoshenko Beams Posed in Inhomogeneous Medium with Localized Nonlinear Damping
    Mansouri, Sabeur
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024,
  • [3] Analysis of non-homogeneous Timoshenko beams with generalized damping distributions
    Sorrentino, S.
    Fasana, A.
    Marchesiello, S.
    JOURNAL OF SOUND AND VIBRATION, 2007, 304 (3-5) : 779 - 792
  • [4] A Non-Local Non-Homogeneous Fractional Timoshenko System with Frictional and Viscoelastic Damping Terms
    Mesloub, Said
    Alhazzani, Eman
    Eltayeb, Gadain Hassan
    AXIOMS, 2023, 12 (07)
  • [5] Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping
    M. M. Cavalcanti
    V. N. Domingos Cavalcanti
    F. A. Falcão Nascimento
    I. Lasiecka
    J. H. Rodrigues
    Zeitschrift für angewandte Mathematik und Physik, 2014, 65 : 1189 - 1206
  • [6] Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Falco Nascimento, F. A.
    Lasiecka, I.
    Rodrigues, J. H.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06): : 1189 - 1206
  • [7] Non-Homogeneous Thermoelastic Timoshenko Systems
    Alves, M. S.
    Jorge Silva, M. A.
    Ma, T. F.
    Munoz Rivera, J. E.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (03): : 461 - 484
  • [8] DECAY RATES FOR TIMOSHENKO SYSTEM WITH NONLINEAR ARBITRARY LOCALIZED DAMPING
    Santos, M. L.
    Almeida Junior, D. S.
    Rodrigues, J. H.
    Falcao Nascimento, Flavio A.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (1-2) : 1 - 26
  • [9] Non-Homogeneous Thermoelastic Timoshenko Systems
    M. S. Alves
    M. A. Jorge Silva
    T. F. Ma
    J. E. Muñoz Rivera
    Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 : 461 - 484
  • [10] Stability Determination in Vibrating Non-homogeneous Functionally Graded Timoshenko Beams
    Feklistova, Ljubov
    Hein, Helle
    INTERNATIONAL CONFERENCE ON MECHANICS AND CONTROL ENGINEERING (MCE 2015), 2015, : 618 - 623