Justification of the empirical laws of the anomalous dielectric relaxation in the framework of the memory function formalism

被引:0
|
作者
Airat A. Khamzin
Raoul R. Nigmatullin
Ivan I. Popov
机构
[1] Kazan (Volga Region) Federal University,Institute of Physics
关键词
fractional calculus operators; Cole-Cole expression; Cole-Davidson expression; Havriliak-Negami expression; dielectric permittivity; fractals; fractal kinetics; Primary 26A33, 28A80, 33E12, 60G22; Secondary 74Dxx, 82D30, 82D60;
D O I
暂无
中图分类号
学科分类号
摘要
Using the memory conception developed in the framework of the Mori-Zwanzig formalism, the kinetic equations for relaxation functions that correspond to the previously suggested empirical functions (Cole-Davidson and Havriliak-Negami) are derived. The obtained kinetic equations contain differential operators of non-integer order and have clear physical meaning and interpretation. The derivation of the memory function corresponding to the Havriliak-Negami relaxation law in the frame of Mori-Zwanzig formalism is given. A physical interpretation of the power-law exponents involved in the Havriliak-Negami empirical expression is provided too.
引用
收藏
页码:247 / 258
页数:11
相关论文
共 18 条
  • [1] Justification of the empirical laws of the anomalous dielectric relaxation in the framework of the memory function formalism
    Khamzin, Airat A.
    Nigmatullin, Raoul R.
    Popov, Ivan I.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (01) : 247 - 258
  • [2] THE APPLICATION OF THE MEMORY-FUNCTION FORMALISM TO DIELECTRIC-RELAXATION
    BORDEWIJK, P
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1980, 35 (11): : 1207 - 1217
  • [3] Memory function for dielectric relaxation
    Díaz-Calleja, R
    García-Bernabé, A
    Sanchis, MJ
    del Castillo, LF
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (24): : 11258 - 11263
  • [4] Stochastic tools hidden behind the empirical dielectric relaxation laws
    Stanislavsky, Aleksander
    Weron, Karina
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2017, 80 (03)
  • [5] Memory kernel formalism with fractional exponents and its application to dielectric relaxation
    Hernandez, S. I.
    del Castillo, L. F.
    del Castillo, Roxana M.
    Garcia-Bernabe, Abel
    Compan, V.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 612
  • [6] THE MEMORY EFFECT IN EMPIRICAL DESCRIPTIONS OF DIELECTRIC-RELAXATION
    DELAFUENTE, MR
    JUBINDO, MAP
    SOLIER, JD
    TELLO, MJ
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1987, 143 (01): : 299 - 306
  • [7] Description of the anomalous dielectric relaxation in disordered systems in the frame of the Mori-Zwanzig formalism
    Khamzin, A. A.
    Nigmatullin, R. R.
    Popov, I. I.
    [J]. 3RD INTERNATIONAL WORKSHOP ON STATISTICAL PHYSICS AND MATHEMATICS FOR COMPLEX SYSTEMS (SPMCS 2012), 2012, 394
  • [8] Investigation of liquid lithium relaxation time by means of the memory function formalism
    Blagoveshchenskii, N. M.
    Novikov, A. G.
    [J]. PHYSICA B-CONDENSED MATTER, 2011, 406 (09) : 1749 - 1751
  • [9] SPIN-LATTICE RELAXATION OF POLYMERS - THE MEMORY-FUNCTION FORMALISM
    FATKULLIN, N
    KIMMICH, R
    WEBER, HW
    [J]. PHYSICAL REVIEW E, 1993, 47 (06) : 4600 - 4603