Stochastic Maximum Principle for Optimal Control of SPDEs

被引:0
|
作者
Marco Fuhrman
Ying Hu
Gianmario Tessitore
机构
[1] Politecnico di Milano,Dipartimento di Matematica
[2] Université Rennes 1,IRMAR
[3] Università di Milano-Bicocca,Dipartimento di Matematica e Applicazioni
来源
Applied Mathematics & Optimization | 2013年 / 68卷
关键词
Stochastic maximum principle; Stochastic partial differential equation; Optimal control; Adjoint process;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a version of the maximum principle, in the sense of Pontryagin, for the optimal control of a stochastic partial differential equation driven by a finite dimensional Wiener process. The equation is formulated in a semi-abstract form that allows direct applications to a large class of controlled stochastic parabolic equations. We allow for a diffusion coefficient dependent on the control parameter, and the space of control actions is general, so that in particular we need to introduce two adjoint processes. The second adjoint process takes values in a suitable space of operators on L4.
引用
收藏
页码:181 / 217
页数:36
相关论文
共 50 条
  • [1] Stochastic Maximum Principle for Optimal Control of SPDEs
    Fuhrman, Marco
    Hu, Ying
    Tessitore, Gianmario
    APPLIED MATHEMATICS AND OPTIMIZATION, 2013, 68 (02): : 181 - 217
  • [2] Stochastic maximum principle for optimal control of SPDEs
    Fuhrman, Marco
    Hu, Ying
    Tessitore, Gianmario
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (13-14) : 683 - 688
  • [3] STOCHASTIC MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL OF A CLASS OF NONLINEAR SPDEs WITH DISSIPATIVE DRIFT
    Fuhrman, Marco
    Orrieri, Carlo
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (01) : 341 - 371
  • [4] Stochastic maximum principle for SPDEs with noise and control on the boundary
    Guatteri, Giuseppina
    SYSTEMS & CONTROL LETTERS, 2011, 60 (03) : 198 - 204
  • [5] Stochastic maximum principle for SPDEs with delay
    Guatteri, Giuseppina
    Masiero, Federica
    Orrieri, Carlo
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (07) : 2396 - 2427
  • [6] Maximum principle for optimal control of SPDEs with locally monotone coefficients
    Coayla-Teran, Edson A.
    INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (09) : 2485 - 2498
  • [7] Stochastic maximum principle for optimal control with multiple priors
    Xu, Yuhong
    SYSTEMS & CONTROL LETTERS, 2014, 64 : 114 - 118
  • [8] A MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL OF STOCHASTIC EVOLUTION EQUATIONS
    Du, Kai
    Meng, Qingxin
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (06) : 4343 - 4362
  • [9] Stochastic maximum principle for optimal control under uncertainty
    Rico-Ramirez, V
    Diwekar, UM
    COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (12) : 2845 - 2849
  • [10] A nonlinear stochastic optimal bounded control using stochastic maximum principle
    Hu, Rong-Chun
    Ying, Zu-Guang
    Zhu, Wei-Qiu
    JOURNAL OF VIBRATION AND CONTROL, 2015, 21 (11) : 2165 - 2186