Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes

被引:0
|
作者
María Gabriela Armentano
Ariel L. Lombardi
Cecilia Penessi
机构
[1] Universidad de Buenos Aires,Departamento de Matemática, Facultad de Ciencias Exactas y Naturales
[2] CONICET – Universidad de Buenos Aires,Instituto de Investigaciones Matemáticas “Luis A. Santaló” (IMAS)
[3] Universidad Nacional de Rosario,Departamento de Matemática, Facultad de Ciencias Exactas, Ingeniería y Agrimensura
[4] CONICET - Universidad Nacional de Rosario,undefined
来源
关键词
Reaction diffusion problems; Singularly perturbed problems; Balanced norms; Graded meshes; Supercloseness; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of this paper is to provide almost robust approximations of singularly perturbed reaction-diffusion equations in two dimensions by using finite elements on graded meshes. When the mesh grading parameter is appropriately chosen, we obtain quasioptimal error estimations in a balanced norm for piecewise bilinear elements, by using a weighted variational formulation of the problem introduced by N. Madden and M. Stynes, Calcolo 58(2) 2021. We also prove a supercloseness result, namely, that the difference between the finite element solution and the Lagrange interpolation of the exact solution, in the weighted balanced norm, is of higher order than the error itself. We finish the work with numerical examples which show the good performance of our approach.
引用
收藏
相关论文
共 50 条
  • [1] Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes
    Armentano, Maria Gabriela
    Lombardi, Ariel L.
    Penessi, Cecilia
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (01)
  • [2] Robust exponential convergence of hp-FEM in balanced norms for singularly perturbed reaction-diffusion equations
    Melenk, J. M.
    Xenophontos, C.
    [J]. CALCOLO, 2016, 53 (01) : 105 - 132
  • [3] Robust a posteriori error estimates for conforming discretizations of a singularly perturbed reaction-diffusion problem on anisotropic meshes
    Zhao, Jikun
    Chen, Shaochun
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (04) : 797 - 818
  • [4] Robust a posteriori error estimates for conforming discretizations of a singularly perturbed reaction-diffusion problem on anisotropic meshes
    Jikun Zhao
    Shaochun Chen
    [J]. Advances in Computational Mathematics, 2014, 40 : 797 - 818
  • [5] A numerical method for singularly perturbed convection–diffusion–reaction equations on polygonal meshes
    Naresh Kumar
    Şuayip Toprakseven
    Ram Jiwari
    [J]. Computational and Applied Mathematics, 2024, 43
  • [6] A numerical method for singularly perturbed convection-diffusion-reaction equations on polygonal meshes
    Kumar, Naresh
    Toprakseven, Suayip
    Jiwari, Ram
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01):
  • [7] Robust exponential convergence of hp-FEM in balanced norms for singularly perturbed reaction-diffusion problems: Corner domains
    Faustmann, M.
    Melenk, J. M.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (07) : 1576 - 1589
  • [8] A ROBUST COMPUTATIONAL TECHNIQUE FOR A SYSTEM OF SINGULARLY PERTURBED REACTION-DIFFUSION EQUATIONS
    Kumar, Vinod
    Bawa, Rajesh K.
    Lal, Arvind K.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2014, 24 (02) : 387 - 395
  • [9] Robust a Posteriori Error Estimation for a Singularly Perturbed Reaction–Diffusion Equation on Anisotropic Tetrahedral Meshes
    Gerd Kunert
    [J]. Advances in Computational Mathematics, 2001, 15 : 237 - 259
  • [10] GUARANTEED AND ROBUST A POSTERIORI ERROR ESTIMATES FOR SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEMS
    Cheddadi, Ibrahim
    Fucik, Radek
    Prieto, Mariana I.
    Vohralik, Martin
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (05): : 867 - 888